Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Adv Mater. 2017 Oct;29(38). doi: 10.1002/adma.201702665. Epub 2017 Aug 21.
This study describes a conductive ink formulation that exploits electrochemical sintering of Zn microparticles in aqueous solutions at room temperature. This material system has relevance to emerging classes of biologically and environmentally degradable electronic devices. The sintering process involves dissolution of a surface passivation layer of zinc oxide in CH COOH/H O and subsequent self-exchange of Zn and Zn at the Zn/H O interface. The chemical specificity associated with the Zn metal and the CH COOH/H O solution is critically important, as revealed by studies of other material combinations. The resulting electrochemistry establishes the basis for a remarkably simple procedure for printing highly conductive (3 × 10 S m ) features in degradable materials at ambient conditions over large areas, with key advantages over strategies based on liquid phase (fusion) sintering that requires both oxide-free metal surfaces and high temperature conditions. Demonstrations include printed magnetic loop antennas for near-field communication devices.
这项研究描述了一种导电油墨配方,它利用在室温下在水溶液中电化学烧结 Zn 微米颗粒。这种材料系统与新兴的生物和环境可降解电子设备类别有关。烧结过程涉及在 CHCOOH/H2O 中溶解氧化锌的表面钝化层,随后在 Zn/H2O 界面处 Zn 和 Zn 自交换。与其他材料组合的研究相比,与 Zn 金属和 CHCOOH/H2O 溶液相关的化学特异性非常重要。所得到的电化学为在环境条件下在大面积上用可降解材料打印高度导电(3×10 S m)特征的非常简单的方法奠定了基础,与基于液相(熔合)烧结的策略相比具有关键优势,后者需要无氧化物的金属表面和高温条件。演示包括用于近场通信设备的印刷磁性环形天线。