Suppr超能文献

通过光开关分子中的系间窜越控制等离子体增强荧光

Controlling Plasmon-Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules.

作者信息

Wang Mingsong, Hartmann Gregory, Wu Zilong, Scarabelli Leonardo, Rajeeva Bharath Bangalore, Jarrett Jeremy W, Perillo Evan P, Dunn Andrew K, Liz-Marzán Luis M, Hwang Gyeong S, Zheng Yuebing

机构信息

Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

Small. 2017 Oct;13(38). doi: 10.1002/smll.201701763. Epub 2017 Aug 21.

Abstract

By harnessing photoswitchable intersystem crossing (ISC) in spiropyran (SP) molecules, active control of plasmon-enhanced fluorescence in the hybrid systems of SP molecules and plasmonic nanostructures is achieved. Specifically, SP-derived merocyanine (MC) molecules formed by photochemical ring-opening reaction display efficient ISC due to their zwitterionic character. In contrast, ISC in quinoidal MC molecules formed by thermal ring-opening reaction is negligible. The high ISC rate can improve fluorescence quantum yield of the plasmon-modified spontaneous emission, only when the plasmonic electromagnetic field enhancement is sufficiently high. Along this line, extensive photomodulation of fluorescence is demonstrated by switching the ISC in MC molecules at Au nanoparticle aggregates, where strongly enhanced plasmonic hot spots exist. The ISC-mediated plasmon-enhanced fluorescence represents a new approach toward controlling the spontaneous emission of fluorophores near plasmonic nanostructures, which expands the applications of active molecular plasmonics in information processing, biosensing, and bioimaging.

摘要

通过利用螺吡喃(SP)分子中的光开关系间窜越(ISC),实现了对SP分子与等离子体纳米结构混合体系中等离子体增强荧光的主动控制。具体而言,通过光化学开环反应形成的源自SP的部花青(MC)分子,由于其两性离子特性而表现出高效的ISC。相比之下,通过热开环反应形成的醌型MC分子中的ISC可忽略不计。只有当等离子体电磁场增强足够高时,高ISC速率才能提高等离子体修饰的自发发射的荧光量子产率。沿着这条线,通过在存在强烈增强的等离子体热点的金纳米颗粒聚集体处切换MC分子中的ISC,证明了荧光的广泛光调制。ISC介导的等离子体增强荧光代表了一种控制等离子体纳米结构附近荧光团自发发射的新方法,这扩展了活性分子等离子体在信息处理、生物传感和生物成像中的应用。

相似文献

1
Controlling Plasmon-Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules.
Small. 2017 Oct;13(38). doi: 10.1002/smll.201701763. Epub 2017 Aug 21.
2
Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
Acc Chem Res. 2022 Mar 15;55(6):831-843. doi: 10.1021/acs.accounts.1c00682. Epub 2022 Feb 25.
3
Super-resolution imaging of interactions between molecules and plasmonic nanostructures.
Phys Chem Chem Phys. 2013 Apr 21;15(15):5345-54. doi: 10.1039/c3cp43882a.
5
Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
Nano Lett. 2019 Sep 11;19(9):6192-6202. doi: 10.1021/acs.nanolett.9b02239. Epub 2019 Aug 12.
6
Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays.
Nanomaterials (Basel). 2020 Dec 20;10(12):2563. doi: 10.3390/nano10122563.
7
Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
ACS Appl Mater Interfaces. 2019 Jul 3;11(26):23083-23092. doi: 10.1021/acsami.9b08802. Epub 2019 Jun 19.
8
Preparation of Photoswitchable Polyacrylic Nanocomposite Fibers Containing Au Nanorods and Spiropyran: Optical and Plasmonic Properties.
Langmuir. 2022 Jul 12;38(27):8428-8441. doi: 10.1021/acs.langmuir.2c01041. Epub 2022 Jun 26.
9
Plasmon-Driven Catalysis on Molecules and Nanomaterials.
Acc Chem Res. 2019 Sep 17;52(9):2506-2515. doi: 10.1021/acs.accounts.9b00224. Epub 2019 Aug 19.
10
Switching ability of nitro-spiropyran on Au(111): electronic structure changes as a sensitive probe during a ring-opening reaction.
J Phys Condens Matter. 2011 Dec 7;23(48):484005. doi: 10.1088/0953-8984/23/48/484005. Epub 2011 Nov 16.

引用本文的文献

1
A Metal Ion-Responsive Spiropyran-Based Fluorescent Color-Changing Hydrogel.
Materials (Basel). 2025 May 30;18(11):2573. doi: 10.3390/ma18112573.
2
Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres.
Adv Mater. 2021 May;33(20):e2007236. doi: 10.1002/adma.202007236. Epub 2021 Apr 9.

本文引用的文献

1
Molecular-Fluorescence Enhancement via Blue-Shifted Plasmon-Induced Resonance Energy Transfer.
J Phys Chem C Nanomater Interfaces. 2016 Jul 14;120(27):14820-14827. doi: 10.1021/acs.jpcc.6b04205. Epub 2016 Jun 15.
4
Control of radiative processes using tunable plasmonic nanopatch antennas.
Nano Lett. 2014 Aug 13;14(8):4797-802. doi: 10.1021/nl501976f. Epub 2014 Jul 17.
6
Fluorescence enhancement of molecules inside a gold nanomatryoshka.
Nano Lett. 2014 May 14;14(5):2926-33. doi: 10.1021/nl501027j. Epub 2014 Apr 23.
7
Synergy of different fluorescent enhancement effects on spiropyran appended onto cellulose.
Langmuir. 2014 Mar 25;30(11):3223-7. doi: 10.1021/la404628p. Epub 2014 Mar 11.
8
Probing distance-dependent plasmon-enhanced near-infrared fluorescence using polyelectrolyte multilayers as dielectric spacers.
Angew Chem Int Ed Engl. 2014 Jan 13;53(3):866-70. doi: 10.1002/anie.201308516. Epub 2013 Dec 2.
9
Giant suppression of photobleaching for single molecule detection via the Purcell effect.
Nano Lett. 2013;13(12):5949-53. doi: 10.1021/nl403047m. Epub 2013 Nov 21.
10
Spiropyran-based dynamic materials.
Chem Soc Rev. 2014 Jan 7;43(1):148-84. doi: 10.1039/c3cs60181a. Epub 2013 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验