Suppr超能文献

带有相依删失数据的生存森林。

Survival forests for data with dependent censoring.

机构信息

Department of Decision Sciences, HEC Montréal, Montréal, Canada.

出版信息

Stat Methods Med Res. 2019 Feb;28(2):445-461. doi: 10.1177/0962280217727314. Epub 2017 Aug 24.

Abstract

Tree-based methods are very powerful and popular tools for analysing survival data with right-censoring. The existing methods assume that the true time-to-event and the censoring times are independent given the covariates. We propose different ways to build survival forests when dependent censoring is suspected, by using an appropriate estimator of the survival function when aggregating the individual trees and/or by modifying the splitting rule. The appropriate estimator used in this paper is the copula-graphic estimator. We also propose a new method for building survival forests, called p-forest, that may be used not only when dependent censoring is suspected, but also as a new survival forest method in general. The results from a simulation study indicate that these modifications improve greatly the estimation of the survival function in situations of dependent censoring. A real data example illustrates how the proposed methods can be used to perform a sensitivity analysis.

摘要

基于树的方法是一种非常强大和流行的工具,可用于分析带有右删失的生存数据。现有方法假设在给定协变量的情况下,真实的事件时间和删失时间是独立的。当怀疑存在相关删失时,我们通过使用适当的生存函数估计量在聚合个体树时,或者通过修改分裂规则,提出了不同的构建生存森林的方法。本文中使用的适当估计量是 Copula-graphic 估计量。我们还提出了一种新的构建生存森林的方法,称为 p-forest,它不仅可以用于怀疑存在相关删失的情况,还可以作为一般的新的生存森林方法。模拟研究的结果表明,这些修改极大地改善了在相关删失情况下生存函数的估计。一个实际数据的例子说明了如何使用所提出的方法进行敏感性分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验