Suppr超能文献

相依删失数据下生存函数的 Copula 图形估计及其在胰腺癌临床试验分析中的应用。

Copula graphic estimation of the survival function with dependent censoring and its application to analysis of pancreatic cancer clinical trial.

机构信息

Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.

Department of Economics, University of Southern California, Los Angeles, CA, USA.

出版信息

Stat Methods Med Res. 2023 May;32(5):944-962. doi: 10.1177/09622802231158812. Epub 2023 Mar 15.

Abstract

In this article, we consider a survival function estimation method that may be suitable for analyses of clinical trials of cancer treatments whose prognosis is known to be poor such as pancreatic cancer treatment. Typically, these kinds of trials are not double-blind, and patients in the control group may drop out in more significant numbers than in the treatment group if their disease progresses (DP). If disease progression is associated with a higher risk of death, then censoring becomes dependent. To estimate the survival function with dependent censoring, we use copula-graphic estimation, where a parametric copula function is used to model the dependence in the joint survival function of the event and censoring time. In this article, we propose a novel method that one can use in choosing the copula parameter. As an application example, we estimate the survival function of the overall survival time of the KG4/2015 study, the phase 3 clinical trial of the efficacy of GV1001 as a treatment for pancreatic cancer. We provide both statistical and clinical pieces of evidence that support the violation of independent censoring. Applying the estimation method with dependent censoring, we obtain that the estimates of the median survival times are 339 days in the treatment group and 225.5 days in the control group. We also find that the estimated difference of the medians is 113.5 days, and the difference is statistically significant at the one-sided level with size 2.5.

摘要

在本文中,我们考虑了一种生存函数估计方法,该方法可能适用于预后较差的癌症治疗临床试验分析,如胰腺癌治疗。通常,这些类型的试验不是双盲的,如果对照组中的患者病情进展(DP),他们的退出人数可能比治疗组多。如果疾病进展与死亡风险增加相关,则会出现相关的删失。为了估计具有相关删失的生存函数,我们使用 Copula 图估计,其中使用参数 Copula 函数来对事件和删失时间的联合生存函数的相关性进行建模。在本文中,我们提出了一种新的方法,可以用于选择 Copula 参数。作为应用实例,我们估计了 KG4/2015 研究的总生存时间的生存函数,这是 GV1001 治疗胰腺癌的 III 期临床试验。我们提供了统计学和临床证据,支持独立删失的违反。应用具有相关删失的估计方法,我们得到治疗组的中位生存时间估计值为 339 天,对照组为 225.5 天。我们还发现中位数的估计差异为 113.5 天,并且差异在单侧水平上具有 2.5 的大小是统计学显著的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验