Detsch Florian, Otte Insa, Appelhans Tim, Nauss Thomas
Environmental Informatics, Faculty of Geography, Philipps-Universität Marburg, Deutschhausstr. 12, 35032, Marburg, Germany.
Environ Monit Assess. 2017 Aug 23;189(9):465. doi: 10.1007/s10661-017-6179-9.
Future climate characteristics of the southern Kilimanjaro region, Tanzania, are mainly determined by local land-use and global climate change. Reinforcing increasing dryness throughout the twentieth century, ongoing land transformation processes emphasize the need for a proper understanding of the regional-scale water budget and possible implications on related ecosystem functioning and services. Here, we present an analysis of scintillometer-based evapotranspiration (ET) covering seven distinct habitat types across a massive climate gradient from the colline savanna woodlands to the upper-mountain Helichrysum zone (940 to 3960 m.a.s.l.). Random forest-based mean variable importance indicates an outstanding significance of net radiation (R ) on the observed ET across all elevation levels. Accordingly, topography and frequent cloud/fog events have a dampening effect at high elevations, whereas no such constraints affect the energy and moisture-rich submontane coffee/grassland level. By contrast, long-term moisture availability is likely to impose restrictions upon evapotranspirative net water loss in savanna, which particularly applies to the pronounced dry season. At plot scale, ET can thereby be approximated reasonably using R , soil heat flux, and to a lesser degree, vapor pressure deficit and rainfall as predictor variables (R 0.59 to 1.00). While multivariate regression based on pooled meteorological data from all plots proves itself useful for predicting hourly ET rates across a broader range of ecosystems (R = 0.71), additional gains in explained variance can be achieved when vegetation characteristics as seen from the NDVI are considered (R = 0.87). To sum up, our results indicate that valuable insights into land cover-specific ET dynamics, including underlying drivers, may be derived even from explicitly short-term measurements in an ecologically highly diverse landscape.
坦桑尼亚乞力马扎罗山南部地区未来的气候特征主要由当地土地利用和全球气候变化决定。整个20世纪干燥程度不断加剧,当前的土地转型过程凸显了正确理解区域尺度水分收支以及对相关生态系统功能和服务可能产生的影响的必要性。在此,我们展示了基于闪烁仪的蒸散量(ET)分析,该分析涵盖了从低地稀树草原林地到高山蜡菊带(海拔940至3960米)巨大气候梯度范围内的七种不同栖息地类型。基于随机森林的平均变量重要性表明,净辐射(R)对所有海拔高度观测到的ET具有显著意义。相应地,地形以及频繁的云/雾事件在高海拔地区具有抑制作用,而在富含能量和水分的亚山地咖啡/草地地区则不存在此类限制。相比之下,长期的水分供应可能会限制稀树草原的蒸发散净水分损失,这在明显的旱季尤为明显。在地块尺度上,利用R、土壤热通量,以及在较小程度上利用蒸气压亏缺和降雨作为预测变量,可以合理地估算ET(R = 0.59至1.00)。虽然基于所有地块汇总气象数据的多元回归证明可用于预测更广泛生态系统中的每小时ET速率(R = 0.71),但考虑从归一化植被指数(NDVI)中看到的植被特征时,可以进一步提高解释方差(R = 0.87)。总之,我们的结果表明,即使在生态高度在生态高度多样的景观中进行明确的短期测量,也可以获得对特定土地覆盖的ET动态(包括潜在驱动因素)的有价值见解。