Suppr超能文献

在基因组预测模型中同时拟合基因组最佳线性无偏预测(genomic-BLUP)和贝叶斯C(Bayes-C)成分

Simultaneous fitting of genomic-BLUP and Bayes-C components in a genomic prediction model.

作者信息

Iheshiulor Oscar O M, Woolliams John A, Svendsen Morten, Solberg Trygve, Meuwissen Theo H E

机构信息

Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway.

The Roslin Institute (Edinburgh), Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK.

出版信息

Genet Sel Evol. 2017 Aug 24;49(1):63. doi: 10.1186/s12711-017-0339-9.

Abstract

BACKGROUND

The rapid adoption of genomic selection is due to two key factors: availability of both high-throughput dense genotyping and statistical methods to estimate and predict breeding values. The development of such methods is still ongoing and, so far, there is no consensus on the best approach. Currently, the linear and non-linear methods for genomic prediction (GP) are treated as distinct approaches. The aim of this study was to evaluate the implementation of an iterative method (called GBC) that incorporates aspects of both linear [genomic-best linear unbiased prediction (G-BLUP)] and non-linear (Bayes-C) methods for GP. The iterative nature of GBC makes it less computationally demanding similar to other non-Markov chain Monte Carlo (MCMC) approaches. However, as a Bayesian method, GBC differs from both MCMC- and non-MCMC-based methods by combining some aspects of G-BLUP and Bayes-C methods for GP. Its relative performance was compared to those of G-BLUP and Bayes-C.

METHODS

We used an imputed 50 K single-nucleotide polymorphism (SNP) dataset based on the Illumina Bovine50K BeadChip, which included 48,249 SNPs and 3244 records. Daughter yield deviations for somatic cell count, fat yield, milk yield, and protein yield were used as response variables.

RESULTS

GBC was frequently (marginally) superior to G-BLUP and Bayes-C in terms of prediction accuracy and was significantly better than G-BLUP only for fat yield. On average across the four traits, GBC yielded a 0.009 and 0.006 increase in prediction accuracy over G-BLUP and Bayes-C, respectively. Computationally, GBC was very much faster than Bayes-C and similar to G-BLUP.

CONCLUSIONS

Our results show that incorporating some aspects of G-BLUP and Bayes-C in a single model can improve accuracy of GP over the commonly used method: G-BLUP. Generally, GBC did not statistically perform better than G-BLUP and Bayes-C, probably due to the close relationships between reference and validation individuals. Nevertheless, it is a flexible tool, in the sense, that it simultaneously incorporates some aspects of linear and non-linear models for GP, thereby exploiting family relationships while also accounting for linkage disequilibrium between SNPs and genes with large effects. The application of GBC in GP merits further exploration.

摘要

背景

基因组选择的迅速采用得益于两个关键因素:高通量密集基因分型技术的可用性以及用于估计和预测育种值的统计方法。此类方法仍在不断发展,到目前为止,对于最佳方法尚无共识。目前,基因组预测(GP)的线性和非线性方法被视为不同的方法。本研究的目的是评估一种迭代方法(称为GBC)的实施情况,该方法融合了线性方法[基因组最佳线性无偏预测(G - BLUP)]和非线性方法(贝叶斯C法)在GP方面的特点。GBC的迭代性质使其计算需求较低,与其他非马尔可夫链蒙特卡罗(MCMC)方法类似。然而,作为一种贝叶斯方法,GBC通过结合G - BLUP和贝叶斯C法在GP方面的某些特点,与基于MCMC和非MCMC的方法有所不同。将其相对性能与G - BLUP和贝叶斯C法进行了比较。

方法

我们使用了基于Illumina Bovine50K BeadChip的估算50K单核苷酸多态性(SNP)数据集,其中包括48,249个SNP和3244条记录。体细胞计数、脂肪产量、牛奶产量和蛋白质产量的女儿产量偏差用作响应变量。

结果

在预测准确性方面,GBC经常(略微)优于G - BLUP和贝叶斯C法,仅在脂肪产量方面显著优于G - BLUP。在这四个性状上平均而言,GBC相对于G - BLUP和贝叶斯C法,预测准确性分别提高了0.009和0.006。在计算上,GBC比贝叶斯C法快得多,与G - BLUP相似。

结论

我们的结果表明,在单个模型中结合G - BLUP和贝叶斯C法的某些方面,可以比常用方法G - BLUP提高GP的准确性。一般来说,GBC在统计学上并不比G - BLUP和贝叶斯C法表现更好,可能是由于参考个体和验证个体之间的密切关系。然而,它是一个灵活的工具,因为它同时融合了GP的线性和非线性模型的某些方面,从而利用了家系关系,同时也考虑了SNP与具有较大效应的基因之间的连锁不平衡。GBC在GP中的应用值得进一步探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f033/5569542/abd7179193cb/12711_2017_339_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验