Suppr超能文献

焦虑中的计算功能障碍:无法区分信号与噪声。

Computational Dysfunctions in Anxiety: Failure to Differentiate Signal From Noise.

作者信息

Huang He, Thompson Wesley, Paulus Martin P

机构信息

Laureate Institute for Brain Research, Tulsa, Oklahoma.

Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychiatry, University of California San Diego, La Jolla, California.

出版信息

Biol Psychiatry. 2017 Sep 15;82(6):440-446. doi: 10.1016/j.biopsych.2017.07.007. Epub 2017 Jul 21.

Abstract

BACKGROUND

Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety.

METHODS

One hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups.

RESULTS

High anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model.

CONCLUSIONS

Anxious subjects' exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models.

摘要

背景

区分一个行为导致某种结果是出于偶然还是由于某种潜在的统计规律(这种规律预示着环境变化),会深刻影响适应性行为。先前的研究表明,焦虑个体可能无法恰当地区分这些情况。本研究旨在精确量化焦虑个体的过程缺陷,并确定这些过程功能障碍在多大程度上是焦虑所特有的。

方法

作为一项正在进行的大型临床人群研究的一部分,招募了122名受试者,他们完成了一个变化点检测任务。强化学习模型被用于解释低焦虑组(总体焦虑严重程度和损害量表得分≤8)和高焦虑组(总体焦虑严重程度和损害量表得分≥9)中观察到的行为差异。

结果

高焦虑个体采用了一种以更高的损失转移率为特征的次优决策策略。计算模型和模拟结果表明,这种差异与更高的基础学习率有关。在上下文依赖的强化学习模型中,这些发现能得到更好的解释。

结论

焦虑个体对不确定性的过度反应导致了一种次优决策策略,这使得这些个体难以确定一个行为导致某种结果是出于偶然还是由于某种统计规律。这些发现对于使用学习模型开发新的行为干预策略具有重要意义。

相似文献

1
Computational Dysfunctions in Anxiety: Failure to Differentiate Signal From Noise.焦虑中的计算功能障碍:无法区分信号与噪声。
Biol Psychiatry. 2017 Sep 15;82(6):440-446. doi: 10.1016/j.biopsych.2017.07.007. Epub 2017 Jul 21.
3
Learned helplessness, depression, and anxiety.
J Nerv Ment Dis. 1975 Nov;161(5):347-57.

引用本文的文献

2
The role of affective states in computational psychiatry.情感状态在计算精神病学中的作用。
Int J Neuropsychopharmacol. 2025 Aug 1;28(8). doi: 10.1093/ijnp/pyaf049.
5
Discounting Future Reward in an Uncertain World.在一个不确定的世界中对未来奖励进行贴现。
Decision (Wash D C ). 2024 Apr;11(2):255-282. doi: 10.1037/dec0000219. Epub 2023 Jun 29.
7
Understanding learning through uncertainty and bias.通过不确定性和偏差来理解学习。
Commun Psychol. 2025 Feb 13;3(1):24. doi: 10.1038/s44271-025-00203-y.

本文引用的文献

4
Uncertainty in perception and the Hierarchical Gaussian Filter.感知中的不确定性与分层高斯滤波器
Front Hum Neurosci. 2014 Nov 19;8:825. doi: 10.3389/fnhum.2014.00825. eCollection 2014.
5
The global burden of anxiety disorders in 2010.2010年焦虑症的全球负担。
Psychol Med. 2014 Aug;44(11):2363-74. doi: 10.1017/S0033291713003243. Epub 2014 Jan 22.
9
A bayesian foundation for individual learning under uncertainty.不确定性下个体学习的贝叶斯基础。
Front Hum Neurosci. 2011 May 2;5:39. doi: 10.3389/fnhum.2011.00039. eCollection 2011.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验