Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology , Seoul 02792, Republic of Korea.
Department of Energy Engineering, Hanyang University , Seoul 04763, Republic of Korea.
Nano Lett. 2017 Sep 13;17(9):5600-5606. doi: 10.1021/acs.nanolett.7b02433. Epub 2017 Aug 31.
Despite its highest theoretical capacity, the practical applications of the silicon anode are still limited by severe capacity fading, which is due to pulverization of the Si particles through volume change during charge and discharge. In this study, silicon nanoparticles are embedded in micron-sized porous carbon spheres (Si-MCS) via a facile hydrothermal process in order to provide a stiff carbon framework that functions as a cage to hold the pulverized silicon pieces. The carbon framework subsequently allows these silicon pieces to rearrange themselves in restricted domains within the sphere. Unlike current carbon coating methods, the Si-MCS electrode is immune to delamination. Hence, it demonstrates unprecedented excellent cyclability (capacity retention: 93.5% after 500 cycles at 0.8 A g), high rate capability (with a specific capacity of 880 mAh g at the high discharge current density of 40 A g), and high volumetric capacity (814.8 mAh cm) on account of increased tap density. The lithium-ion battery using the new Si-MCS anode and commercial LiNiCoMnO cathode shows a high specific energy density above 300 Wh kg, which is considerably higher than that of commercial graphite anodes.
尽管硅阳极具有最高的理论容量,但由于在充放电过程中硅颗粒的体积变化导致严重的容量衰减,其实际应用仍然受到限制。在这项研究中,通过简便的水热工艺将硅纳米颗粒嵌入到微米级多孔碳球中(Si-MCS),以提供一个坚硬的碳框架,作为容纳粉碎硅颗粒的笼子。随后,碳框架允许这些硅颗粒在球内的受限区域内重新排列。与当前的碳涂层方法不同,Si-MCS 电极不会分层。因此,它表现出了前所未有的优异循环稳定性(在 0.8 A g 的电流密度下循环 500 次后容量保持率为 93.5%)、高倍率性能(在 40 A g 的高放电电流密度下具有 880 mAh g 的比容量)和高体积容量(814.8 mAh cm),这归因于振实密度的增加。使用新型 Si-MCS 阳极和商业 LiNiCoMnO 阴极的锂离子电池具有高于 300 Wh kg 的高比能量密度,明显高于商业石墨阳极。