Suppr超能文献

基于生物信号分析和深度学习方法的自动化情感计算。

Automated Affective Computing Based on Bio-Signals Analysis and Deep Learning Approach.

机构信息

Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, 9, 66100 Chieti, Italy.

Department of Psychological, Health and Territorial Sciences, University G. D'Annunzio of Chieti-Pescara, 9, 66100 Chieti, Italy.

出版信息

Sensors (Basel). 2022 Feb 24;22(5):1789. doi: 10.3390/s22051789.

Abstract

Extensive possibilities of applications have rendered emotion recognition ineluctable and challenging in the fields of computer science as well as in human-machine interaction and affective computing. Fields that, in turn, are increasingly requiring real-time applications or interactions in everyday life scenarios. However, while extremely desirable, an accurate and automated emotion classification approach remains a challenging issue. To this end, this study presents an automated emotion recognition model based on easily accessible physiological signals and deep learning (DL) approaches. As a DL algorithm, a Feedforward Neural Network was employed in this study. The network outcome was further compared with canonical machine learning algorithms such as random forest (RF). The developed DL model relied on the combined use of wearables and contactless technologies, such as thermal infrared imaging. Such a model is able to classify the emotional state into four classes, derived from the linear combination of valence and arousal (referring to the circumplex model of affect's four-quadrant structure) with an overall accuracy of 70% outperforming the 66% accuracy reached by the RF model. Considering the ecological and agile nature of the technique used the proposed model could lead to innovative applications in the affective computing field.

摘要

在计算机科学以及人机交互和情感计算领域,情感识别具有广泛的应用可能性,这使其变得不可或缺且富有挑战性。而这些领域反过来又越来越需要在日常生活场景中实现实时应用或交互。然而,尽管这是极其理想的,但准确和自动化的情感分类方法仍然是一个具有挑战性的问题。为此,本研究提出了一种基于易于获取的生理信号和深度学习 (DL) 方法的自动化情感识别模型。在这项研究中,作为一种 DL 算法,使用了前馈神经网络。将网络结果与经典机器学习算法(如随机森林 (RF))进行了进一步比较。所开发的 DL 模型依赖于可穿戴设备和非接触式技术(如热红外成像)的结合使用。该模型能够将情绪状态分为四类,这是通过效价和唤醒度的线性组合得出的(指情感的四象限结构的双极模型),总体准确率为 70%,优于 RF 模型达到的 66%的准确率。考虑到所使用技术的生态和敏捷性,所提出的模型可以在情感计算领域中带来创新的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/816a/8914721/fe6bf00019ec/sensors-22-01789-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验