Suppr超能文献

基于细菌血红素的一氧化氮传感器。

Bacterial Heme-Based Sensors of Nitric Oxide.

机构信息

1 Department of Chemistry, Stony Brook University , Stony Brook, New York.

2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York.

出版信息

Antioxid Redox Signal. 2018 Dec 20;29(18):1872-1887. doi: 10.1089/ars.2017.7235. Epub 2017 Sep 28.

Abstract

SIGNIFICANCE

The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa.

CRITICAL ISSUES

The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain.

FUTURE DIRECTIONS

The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.

摘要

意义

一氧化氮(NO)分子已被证明可调节细菌的行为,包括生物膜的形成。细菌中 NO 的检测和信号转导通常由血红素蛋白介导,如双(3',5')-环二核苷酸特异性磷酸二酯酶 YybT、转录调节因子异化硝酸盐呼吸调节因子或血红素-NO/氧结合(H-NOX)结构域。H-NOX 结构域是经过充分研究的主要 NO 传感器,能够检测纳摩尔级的 NO,并影响许多细菌物种的下游信号转导。然而,许多细菌,包括人类病原体铜绿假单胞菌,对纳摩尔浓度的 NO 有反应,但不含有注释的 H-NOX 结构域,这表明存在另一种纳米级 NO 感应蛋白(NosP)。新进展:一种新发现的细菌血红素蛋白称为 NosP,除了 H-NOX 之外,也可以作为细菌中的主要 NO 传感器,或者取代 H-NOX。NosP 最初被描述为一种组氨酸激酶信号转导途径的调节剂,该途径参与铜绿假单胞菌生物膜的形成。

关键问题

细菌中 NO 信号转导的分子细节仍知之甚少。仍有许多对 NO 有反应的细菌,但它们的基因组中既不编码 H-NOX 也不编码 NosP 结构域。即使在编码 H-NOX 或 NosP 的细菌中,仍有许多问题存在。

未来方向

许多细菌中 NO 调节的分子机制仍有待建立。需要进一步的研究来了解 NosP 信号的机制。在细菌中血红素基传感器的结构和分子理解方面的进展可能会导致减轻或控制细菌生物膜形成或持续性生物膜相关感染的策略。

相似文献

1
Bacterial Heme-Based Sensors of Nitric Oxide.基于细菌血红素的一氧化氮传感器。
Antioxid Redox Signal. 2018 Dec 20;29(18):1872-1887. doi: 10.1089/ars.2017.7235. Epub 2017 Sep 28.
2
Bacterial Haemoprotein Sensors of NO: H-NOX and NosP.细菌血红素蛋白 NO 传感器:H-NOX 和 NosP。
Adv Microb Physiol. 2017;70:1-36. doi: 10.1016/bs.ampbs.2017.01.004. Epub 2017 Mar 18.
8
Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior.一氧化氮感应 H-NOX 蛋白调控细菌的群体行为。
Trends Biochem Sci. 2013 Nov;38(11):566-75. doi: 10.1016/j.tibs.2013.08.008. Epub 2013 Oct 7.
9
Nitric oxide regulated two-component signaling in Pseudoalteromonas atlantica.硝酸调节假交替单胞菌中的双组分信号转导。
Biochem Biophys Res Commun. 2012 May 11;421(3):521-6. doi: 10.1016/j.bbrc.2012.04.037. Epub 2012 Apr 10.

引用本文的文献

5
The nitric oxide synthase gene negatively regulates biofilm formation in .一氧化氮合酶基因负调控 生物膜的形成。
Front Cell Infect Microbiol. 2022 Nov 3;12:1015859. doi: 10.3389/fcimb.2022.1015859. eCollection 2022.
8
Engineered Bacteria-Based Living Materials for Biotherapeutic Applications.用于生物治疗应用的工程细菌基生物材料。
Front Bioeng Biotechnol. 2022 Apr 28;10:870675. doi: 10.3389/fbioe.2022.870675. eCollection 2022.

本文引用的文献

3
Nitric Oxide Regulation of H-NOX Signaling Pathways in Bacteria.细菌中H-NOX信号通路的一氧化氮调节
Biochemistry. 2016 Sep 6;55(35):4873-84. doi: 10.1021/acs.biochem.6b00754. Epub 2016 Aug 19.
6
Kinetic Control of O2 Reactivity in H-NOX Domains.H-NOX结构域中O₂反应性的动力学控制
J Phys Chem B. 2016 Jun 23;120(24):5351-8. doi: 10.1021/acs.jpcb.6b03348. Epub 2016 Jun 8.
9
Cyclic di-AMP mediates biofilm formation.环二腺苷酸介导生物膜形成。
Mol Microbiol. 2016 Mar;99(5):945-59. doi: 10.1111/mmi.13277. Epub 2015 Dec 15.
10
Parallel quorum sensing signaling pathways in Vibrio cholerae.霍乱弧菌中的平行群体感应信号通路。
Curr Genet. 2016 May;62(2):255-60. doi: 10.1007/s00294-015-0532-8. Epub 2015 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验