Department of Materials Science & Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel. Solid State Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel. Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States of America.
Nanotechnology. 2017 Oct 27;28(43):435205. doi: 10.1088/1361-6528/aa8902. Epub 2017 Aug 29.
Here, we optimized ultrathin films of granular NbN on SiO and of amorphous αWSi. We showed that hybrid superconducting nanowire single-photon detectors (SNSPDs) made of 2 nm thick αWSi films over 2 nm thick NbN films exhibit advantageous coexistence of timing (<5 ns reset time and 52 ps timing jitter) and efficiency (>96% quantum efficiency) performance. We discuss the governing mechanism of this hybridization via the proximity effect. Our results demonstrate saturated SNSPDs performance at 1550 nm optical wavelength and suggest that such hybridization can significantly expand the range of available superconducting properties, impacting other nano-superconducting technologies. Lastly, this hybridization may be used to tune properties, such as the amorphous character of superconducting films.
在这里,我们优化了颗粒状 NbN 在 SiO 上和非晶态 αWSi 上的超薄薄膜。我们表明,由 2nm 厚的 αWSi 薄膜覆盖 2nm 厚的 NbN 薄膜制成的混合超导纳米线单光子探测器 (SNSPD) 具有有利的定时(<5ns 复位时间和 52ps 定时抖动)和效率(>96%量子效率)性能共存。我们通过近邻效应讨论了这种杂化的控制机制。我们的结果表明,在 1550nm 光波长下,SNSPD 的性能达到饱和,并表明这种杂化可以显著扩展可用超导性能的范围,从而影响其他纳米超导技术。最后,这种杂化可以用于调整性能,例如超导薄膜的非晶态特性。