Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
Sci Rep. 2017 Aug 29;7(1):9721. doi: 10.1038/s41598-017-10047-0.
We report an extension of plasmonic lithography to nanoscale 2.5-dimensional (2.5D) surface patterning. To obtain the impulse response of a plasmonic lithography system, we described the field distribution of a point dipole source generated by a metallic ridge aperture with a theoretical model using the concepts of quasi-spherical waves and surface plasmon-polaritons. We performed deconvolution to construct an exposure map of a target shape for patterning. For practical applications, we fabricated several nanoscale and microscale structures, such as a cone, microlens array, nanoneedle, and a multiscale structure using the plasmonic lithography system. We verified the possibility of applying plasmonic lithography to multiscale structuring from a few tens of nanometres to a few micrometres in the lateral dimension. We obtained a root-mean-square error of 4.7 nm between the target shape and the patterned shape, and a surface roughness of 11.5 nm.
我们将等离子体光刻技术扩展到纳米级 2.5 维(2.5D)表面图案化。为了获得等离子体光刻系统的脉冲响应,我们使用准球面波和表面等离激元的概念,通过理论模型描述了由金属脊形孔产生的点偶极子源的场分布。我们进行了反卷积,以构建用于图案化的目标形状的曝光图。为了实际应用,我们使用等离子体光刻系统制造了几个纳米级和微米级结构,例如锥形、微透镜阵列、纳米针和多尺度结构。我们验证了将等离子体光刻技术应用于从几十纳米到几微米的横向尺寸的多尺度结构的可能性。我们在目标形状和图案形状之间获得了 4.7nm 的均方根误差,并且表面粗糙度为 11.5nm。