Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia, 22904, USA.
Intel Corp., Santa Clara, CA, 95054, USA.
Sci Rep. 2017 Aug 29;7(1):9714. doi: 10.1038/s41598-017-10248-7.
We propose Graphene Klein tunnel transistors (GKTFET) as a way to enforce current saturation while maintaining large mobility for high speed radio frequency (RF) applications. The GKTFET consists of a sequence of angled graphene p-n junctions (GPNJs). Klein tunneling creates a collimation of electrons across each GPNJ, so that the lack of substantial overlap between transmission lobes across successive junctions creates a gate-tunable transport gap without significantly compromising the on-current. Electron scattering at the device edge tends to bleed parasitic states into the gap, but the resulting pseudogap is still sufficient to create a saturated output (I -V ) characteristic and a high output resistance. The modulated density of states generates a higher transconductance (g ) and unity current gain cut-off frequency (f ) than GFETs. More significantly the high output resistance makes the unity power gain cut-off frequency (f ) of GKTFETs considerably larger than GFETs, making analog GKTFET potentially useful for RF electronics. Our estimation shows the f /f of a GKTFET with 1 μm channel reaches 33 GHz/17 GHz, and scale up to 350 GHz/53 GHz for 100 nm channel (assuming a single, scalable trapezoidal gate). The f of a GKTFET is 10 times higher than a GFET with the same channel length.
我们提出石墨烯 Klein 隧道晶体管(GKTFET)作为一种在保持高速射频(RF)应用中高迁移率的同时强制电流饱和的方法。GKTFET 由一系列倾斜的石墨烯 p-n 结(GPNJ)组成。Klein 隧道效应在每个 GPNJ 中产生电子的准直,因此,在连续结之间的传输瓣之间没有实质性的重叠,从而在不显著影响导通电流的情况下创建了可由栅极调谐的传输间隙。器件边缘的电子散射往往会将寄生状态泄漏到间隙中,但由此产生的赝隙仍然足以产生饱和输出(I-V)特性和高输出电阻。调制的态密度产生比 GFET 更高的跨导(g)和单位电流增益截止频率(f)。更重要的是,高输出电阻使 GKTFET 的单位功率增益截止频率(f)明显大于 GFET,使得模拟 GKTFET 有可能用于 RF 电子学。我们的估计表明,具有 1μm 沟道的 GKTFET 的 f/f达到 33GHz/17GHz,并扩展到 100nm 沟道的 350GHz/53GHz(假设单个可扩展的梯形栅极)。具有相同沟道长度的 GKTFET 的 f 比 GFET 高 10 倍。