Suppr超能文献

用于高速模拟射频应用的石墨烯 Klein 隧道晶体管。

Graphene Klein tunnel transistors for high speed analog RF applications.

机构信息

Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia, 22904, USA.

Intel Corp., Santa Clara, CA, 95054, USA.

出版信息

Sci Rep. 2017 Aug 29;7(1):9714. doi: 10.1038/s41598-017-10248-7.

Abstract

We propose Graphene Klein tunnel transistors (GKTFET) as a way to enforce current saturation while maintaining large mobility for high speed radio frequency (RF) applications. The GKTFET consists of a sequence of angled graphene p-n junctions (GPNJs). Klein tunneling creates a collimation of electrons across each GPNJ, so that the lack of substantial overlap between transmission lobes across successive junctions creates a gate-tunable transport gap without significantly compromising the on-current. Electron scattering at the device edge tends to bleed parasitic states into the gap, but the resulting pseudogap is still sufficient to create a saturated output (I -V ) characteristic and a high output resistance. The modulated density of states generates a higher transconductance (g ) and unity current gain cut-off frequency (f ) than GFETs. More significantly the high output resistance makes the unity power gain cut-off frequency (f ) of GKTFETs considerably larger than GFETs, making analog GKTFET potentially useful for RF electronics. Our estimation shows the f /f of a GKTFET with 1 μm channel reaches 33 GHz/17 GHz, and scale up to 350 GHz/53 GHz for 100 nm channel (assuming a single, scalable trapezoidal gate). The f of a GKTFET is 10 times higher than a GFET with the same channel length.

摘要

我们提出石墨烯 Klein 隧道晶体管(GKTFET)作为一种在保持高速射频(RF)应用中高迁移率的同时强制电流饱和的方法。GKTFET 由一系列倾斜的石墨烯 p-n 结(GPNJ)组成。Klein 隧道效应在每个 GPNJ 中产生电子的准直,因此,在连续结之间的传输瓣之间没有实质性的重叠,从而在不显著影响导通电流的情况下创建了可由栅极调谐的传输间隙。器件边缘的电子散射往往会将寄生状态泄漏到间隙中,但由此产生的赝隙仍然足以产生饱和输出(I-V)特性和高输出电阻。调制的态密度产生比 GFET 更高的跨导(g)和单位电流增益截止频率(f)。更重要的是,高输出电阻使 GKTFET 的单位功率增益截止频率(f)明显大于 GFET,使得模拟 GKTFET 有可能用于 RF 电子学。我们的估计表明,具有 1μm 沟道的 GKTFET 的 f/f达到 33GHz/17GHz,并扩展到 100nm 沟道的 350GHz/53GHz(假设单个可扩展的梯形栅极)。具有相同沟道长度的 GKTFET 的 f 比 GFET 高 10 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91b0/5575307/9d5558b1c463/41598_2017_10248_Fig1_HTML.jpg

相似文献

1
Graphene Klein tunnel transistors for high speed analog RF applications.
Sci Rep. 2017 Aug 29;7(1):9714. doi: 10.1038/s41598-017-10248-7.
2
High-Gain Graphene Transistors with a Thin AlOx Top-Gate Oxide.
Sci Rep. 2017 May 25;7(1):2419. doi: 10.1038/s41598-017-02541-2.
3
Flexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride.
ACS Nano. 2015 Sep 22;9(9):8953-9. doi: 10.1021/acsnano.5b02816. Epub 2015 Aug 17.
4
Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates.
Nanoscale. 2016 Aug 7;8(29):14097-103. doi: 10.1039/c6nr01521b. Epub 2016 Jul 11.
5
Self-aligned fabrication of graphene RF transistors with T-shaped gate.
ACS Nano. 2012 Apr 24;6(4):3371-6. doi: 10.1021/nn300393c. Epub 2012 Mar 20.
6
High-speed graphene transistors with a self-aligned nanowire gate.
Nature. 2010 Sep 16;467(7313):305-8. doi: 10.1038/nature09405. Epub 2010 Sep 1.
7
High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits.
Nanoscale. 2015 Jul 7;7(25):10954-62. doi: 10.1039/c5nr02292d. Epub 2015 Jun 10.
8
Analog/RF Performance of T-Shape Gate Dual-Source Tunnel Field-Effect Transistor.
Nanoscale Res Lett. 2018 Oct 12;13(1):321. doi: 10.1186/s11671-018-2723-y.
9
High-frequency graphene voltage amplifier.
Nano Lett. 2011 Sep 14;11(9):3690-3. doi: 10.1021/nl2016637. Epub 2011 Aug 5.
10
Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz.
ACS Appl Mater Interfaces. 2019 Nov 13;11(45):42496-42503. doi: 10.1021/acsami.9b15334. Epub 2019 Oct 29.

引用本文的文献

1
A corner reflector of graphene Dirac fermions as a phonon-scattering sensor.
Nat Commun. 2019 Jun 3;10(1):2428. doi: 10.1038/s41467-019-10326-6.
2
Graphene transistor based on tunable Dirac fermion optics.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6575-6579. doi: 10.1073/pnas.1816119116. Epub 2019 Mar 15.

本文引用的文献

1
Electron optics with p-n junctions in ballistic graphene.
Science. 2016 Sep 30;353(6307):1522-1525. doi: 10.1126/science.aaf5481. Epub 2016 Sep 29.
2
Electronics based on two-dimensional materials.
Nat Nanotechnol. 2014 Oct;9(10):768-79. doi: 10.1038/nnano.2014.207.
3
One-dimensional electrical contact to a two-dimensional material.
Science. 2013 Nov 1;342(6158):614-7. doi: 10.1126/science.1244358.
4
Manipulating chiral transmission by gate geometry: switching in graphene with transmission gaps.
ACS Nano. 2013 Nov 26;7(11):9808-13. doi: 10.1021/nn403336n. Epub 2013 Oct 15.
5
Graphene field effect transistor without an energy gap.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):8786-9. doi: 10.1073/pnas.1305416110. Epub 2013 May 13.
6
Record maximum oscillation frequency in C-face epitaxial graphene transistors.
Nano Lett. 2013 Mar 13;13(3):942-7. doi: 10.1021/nl303587r. Epub 2013 Feb 21.
7
Angle-dependent carrier transmission in graphene p-n junctions.
Nano Lett. 2012 Sep 12;12(9):4460-4. doi: 10.1021/nl3011897. Epub 2012 Aug 15.
8
High-frequency self-aligned graphene transistors with transferred gate stacks.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11588-92. doi: 10.1073/pnas.1205696109. Epub 2012 Jul 2.
9
State-of-the-art graphene high-frequency electronics.
Nano Lett. 2012 Jun 13;12(6):3062-7. doi: 10.1021/nl300904k. Epub 2012 May 14.
10
High-speed graphene transistors with a self-aligned nanowire gate.
Nature. 2010 Sep 16;467(7313):305-8. doi: 10.1038/nature09405. Epub 2010 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验