Manandhar Anjela, Kang Myungshim, Chakraborty Kaushik, Tang Phu K, Loverde Sharon M
Department of Chemistry, College of Staten Island, City University of New York, Staten Island, NY 10314, USA.
Org Biomol Chem. 2017 Oct 4;15(38):7993-8005. doi: 10.1039/c7ob01290j.
This review describes recent progress in the area of molecular simulations of peptide assemblies, including peptide-amphiphiles and drug-amphiphiles. The ability to predict the structure and stability of peptide self-assemblies from the molecular level up is vital to the field of nanobiotechnology. Computational methods such as molecular dynamics offer the opportunity to characterize intermolecular forces between peptide-amphiphiles that are critical to the self-assembly process. Furthermore, these computational methods provide the ability to computationally probe the structure of these supramolecular assemblies at the molecular level, which is a challenge experimentally. Herein, we briefly highlight progress in the areas of all-atomistic and coarse-grained simulation studies investigating the self-assembly process of short peptides and peptide amphiphiles. We also discuss recent all-atomistic and coarse-grained simulations of the self-assembly of a drug-amphiphile into elongated filaments. Next, we discuss how these computational methods can provide further insight into the pathway of cylindrical nanofiber formation and predict their biocompatibility by studying the interaction of these peptide-amphiphile nanostructures with model cell membranes.
本综述描述了肽组装体分子模拟领域的最新进展,包括肽两亲分子和药物两亲分子。从分子层面预测肽自组装体的结构和稳定性的能力对纳米生物技术领域至关重要。诸如分子动力学等计算方法提供了表征肽两亲分子之间对自组装过程至关重要的分子间力的机会。此外,这些计算方法能够在分子层面通过计算探测这些超分子组装体的结构,这在实验上是一项挑战。在此,我们简要强调在全原子和粗粒度模拟研究领域取得的进展,这些研究探讨了短肽和肽两亲分子的自组装过程。我们还讨论了药物两亲分子自组装成长丝状纤维的最新全原子和粗粒度模拟。接下来,我们讨论这些计算方法如何通过研究这些肽两亲分子纳米结构与模型细胞膜的相互作用,进一步深入了解圆柱形纳米纤维的形成途径并预测其生物相容性。