Zaldivar Gervasio, Perez Sirkin Yamila A, Debais Gabriel, Fiora Maria, Missoni Leandro L, Gonzalez Solveyra Estefania, Tagliazucchi Mario
Departamento de Química Inorgánica Analítica y Química Física, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2 C1428EGA, Buenos Aires, Argentina.
Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE). Ciudad Universitaria, CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Pabellón 2 C1428EGA, Buenos Aires, Argentina.
ACS Omega. 2022 Oct 19;7(43):38109-38121. doi: 10.1021/acsomega.2c04785. eCollection 2022 Nov 1.
The supramolecular organization of soft materials, such as colloids, polymers, and amphiphiles, results from a subtle balance of weak intermolecular interactions and entropic forces. This competition can drive the self-organization of soft materials at the nano-/mesoscale. Modeling soft-matter self-assembly requires, therefore, considering a complex interplay of forces at the relevant length scales without sacrificing the molecular details that define the chemical identity of the system. This mini-review focuses on the application of a tool known as molecular theory to study self-assembly in different types of soft materials. This tool is based on extremizing an approximate free energy functional of the system, and, therefore, it provides a direct, computationally affordable estimation of the stability of different self-assembled morphologies. Moreover, the molecular theory explicitly incorporates structural details of the chemical species in the system, accounts for their conformational degrees of freedom, and explicitly includes their chemical equilibria. This mini-review introduces the general ideas behind the theoretical formalism and discusses its advantages and limitations compared with other theoretical tools commonly used to study self-assembled soft materials. Recent application examples are discussed: the self-patterning of polyelectrolyte brushes on planar and curved surfaces, the formation of nanoparticle (NP) superlattices, and the self-organization of amphiphiles into micelles of different shapes. Finally, prospective methodological improvements and extensions (also relevant for related theoretical tools) are analyzed.
软材料(如胶体、聚合物和两亲分子)的超分子结构源于弱分子间相互作用和熵力之间的微妙平衡。这种竞争能够驱动软材料在纳米/微米尺度上的自组装。因此,对软物质自组装进行建模需要考虑相关长度尺度上各种力的复杂相互作用,同时又不能忽略定义系统化学特性的分子细节。本综述聚焦于一种名为分子理论的工具在研究不同类型软材料自组装方面的应用。该工具基于使系统的近似自由能泛函取极值,因此它能直接且计算成本较低地估算不同自组装形态的稳定性。此外,分子理论明确纳入了系统中化学物种的结构细节,考虑了它们的构象自由度,并明确包含了它们的化学平衡。本综述介绍了理论形式背后的一般概念,并讨论了与其他常用于研究自组装软材料的理论工具相比,它的优点和局限性。文中还讨论了近期的应用实例:聚电解质刷在平面和曲面上的自图案化、纳米颗粒(NP)超晶格的形成以及两亲分子自组装成不同形状的胶束。最后,分析了可能的方法改进和扩展(这对相关理论工具也有借鉴意义)。