Max Planck Institute for Solid State Research , Heisenbergstraße 1, 70569 Stuttgart, Germany.
4th Physics Institute and Research Center SCoPE, University of Stuttgart , Pfaffenwaldring 57, 70569 Stuttgart, Germany.
Nano Lett. 2017 Oct 11;17(10):6402-6408. doi: 10.1021/acs.nanolett.7b03303. Epub 2017 Sep 8.
Refractory plasmonics deals with metallic nanostructures that can withstand high temperatures and intense laser pulses. The common belief was that refractory materials such as TiN are necessary for this purpose. Here we show that refractory plasmonics is possible without refractory materials. We demonstrate that gold nanostructures which are overcoated with 4 and 40 nm AlO (alumina) by an atomic layer deposition process or by thick IC1-200 resist can withstand temperatures of over 800 °C at ambient atmospheric conditions. Furthermore, the alumina-coated structures can withstand intense laser radiation of over 10 GW/cm at ambient conditions without damage. Thus, it is possible to combine the excellent linear and nonlinear plasmonic properties of gold with material properties that were believed to be only possible with the lossier and less nonlinear refractory materials.
难熔等离子体学涉及能够承受高温和强激光脉冲的金属纳米结构。人们普遍认为,TiN 等难熔材料是实现这一目标所必需的。在这里,我们表明不需要难熔材料也可以实现难熔等离子体学。我们证明,通过原子层沉积工艺或厚的 IC1-200 抗蚀剂在金纳米结构上覆盖 4nm 和 40nm 的 AlO(氧化铝),可以在环境大气条件下承受超过 800°C 的温度。此外,氧化铝涂层结构可以在环境条件下承受超过 10GW/cm 的强激光辐射而不损坏。因此,有可能将金的出色线性和非线性等离子体特性与被认为只能通过损耗更大、非线性更小的难熔材料才能获得的材料特性结合起来。