Parikh Pritesh, Senowitz Corey, Lyons Don, Martin Isabelle, Prosa Ty J, DiBattista Michael, Devaraj Arun, Meng Y Shirley
Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Qualcomm Technologies, Inc., 5775 Morehouse Drive, San Diego, CA 92121, USA.
Microsc Microanal. 2017 Oct;23(5):916-925. doi: 10.1017/S1431927617012491. Epub 2017 Aug 31.
The semiconductor industry has seen tremendous progress over the last few decades with continuous reduction in transistor size to improve device performance. Miniaturization of devices has led to changes in the dopants and dielectric layers incorporated. As the gradual shift from two-dimensional metal-oxide semiconductor field-effect transistor to three-dimensional (3D) field-effect transistors (finFETs) occurred, it has become imperative to understand compositional variability with nanoscale spatial resolution. Compositional changes can affect device performance primarily through fluctuations in threshold voltage and channel current density. Traditional techniques such as scanning electron microscope and focused ion beam no longer provide the required resolution to probe the physical structure and chemical composition of individual fins. Hence advanced multimodal characterization approaches are required to better understand electronic devices. Herein, we report the study of 14 nm commercial finFETs using atom probe tomography (APT) and scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (STEM-EDS). Complimentary compositional maps were obtained using both techniques with analysis of the gate dielectrics and silicon fin. APT additionally provided 3D information and allowed analysis of the distribution of low atomic number dopant elements (e.g., boron), which are elusive when using STEM-EDS.
在过去几十年里,半导体行业取得了巨大进展,通过不断缩小晶体管尺寸来提高器件性能。器件的小型化导致了所采用的掺杂剂和介电层的变化。随着从二维金属氧化物半导体场效应晶体管向三维(3D)场效应晶体管(鳍式场效应晶体管)的逐渐转变,以纳米级空间分辨率了解成分变化变得势在必行。成分变化主要通过阈值电压和沟道电流密度的波动来影响器件性能。诸如扫描电子显微镜和聚焦离子束等传统技术已不再能提供探测单个鳍片的物理结构和化学成分所需的分辨率。因此,需要先进的多模态表征方法来更好地理解电子器件。在此,我们报告了使用原子探针断层扫描(APT)和扫描透射电子显微镜 - 能量色散X射线光谱(STEM - EDS)对14纳米商用鳍式场效应晶体管的研究。使用这两种技术获得了互补的成分图,并对栅极电介质和硅鳍进行了分析。APT还提供了三维信息,并允许分析低原子序数掺杂元素(如硼)的分布,而使用STEM - EDS时这些元素难以捉摸。