Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Genome Res. 2017 Oct;27(10):1623-1633. doi: 10.1101/gr.218149.116. Epub 2017 Aug 30.
Gene regulation shapes the evolution of phenotypic diversity. We investigated the evolution of liver promoters and enhancers in six primate species using ChIP-seq (H3K27ac and H3K4me1) to profile -regulatory elements (CREs) and using RNA-seq to characterize gene expression in the same individuals. To quantify regulatory divergence, we compared CRE activity across species by testing differential ChIP-seq read depths directly measured for orthologous sequences. We show that the primate regulatory landscape is largely conserved across the lineage, with 63% of the tested human liver CREs showing similar activity across species. Conserved CRE function is associated with sequence conservation, proximity to coding genes, cell-type specificity, and transcription factor binding. Newly evolved CREs are enriched in immune response and neurodevelopmental functions. We further demonstrate that conserved CREs bind master regulators, suggesting that while CREs contribute to species adaptation to the environment, core functions remain intact. Newly evolved CREs are enriched in young transposable elements (TEs), including Long-Terminal-Repeats (LTRs) and SINE-VNTR-s (SVAs), that significantly affect gene expression. Conversely, only 16% of conserved CREs overlap TEs. We tested the -regulatory activity of 69 TE subfamilies by luciferase reporter assays, spanning all major TE classes, and showed that 95.6% of tested TEs can function as either transcriptional activators or repressors. In conclusion, we demonstrated the critical role of TEs in primate gene regulation and illustrated potential mechanisms underlying evolutionary divergence among the primate species through the noncoding genome.
基因调控塑造了表型多样性的进化。我们使用 ChIP-seq(H3K27ac 和 H3K4me1)来描绘 - 调控元件(CREs),并使用 RNA-seq 来描述同一个体的基因表达,从而研究了六种灵长类动物肝脏启动子和增强子的进化。为了量化调控分歧,我们通过直接测试同源序列的差异 ChIP-seq 读取深度来比较跨物种的 CRE 活性。我们表明,灵长类动物的调控景观在整个谱系中基本保持保守,63%的测试人类肝脏 CRE 在物种间表现出相似的活性。保守的 CRE 功能与序列保守性、与编码基因的接近程度、细胞类型特异性和转录因子结合有关。新进化的 CREs 在免疫反应和神经发育功能中富集。我们进一步证明,保守的 CREs 结合主要调控因子,表明尽管 CREs有助于物种适应环境,但核心功能仍然完整。新进化的 CREs 在年轻的转座元件(TEs)中富集,包括长末端重复(LTR)和 SINE-VNTR-s(SVAs),它们显著影响基因表达。相反,只有 16%的保守 CREs 与 TEs 重叠。我们通过荧光素酶报告基因检测,测试了 69 个 TE 亚家族的 - 调控活性,涵盖了所有主要的 TE 类别,并表明 95.6%的测试 TE 可以作为转录激活剂或抑制剂发挥作用。总之,我们证明了 TEs 在灵长类动物基因调控中的关键作用,并通过非编码基因组说明了灵长类物种之间进化分歧的潜在机制。