Öktem Ozan, Chen Chong, Domaniç Nevzat Onur, Ravikumar Pradeep, Bajaj Chandrajit
Department of Mathematics, KTH - Royal Institute of Technology, 100 44 Stockholm, Sweden.
Department of Mathematics, KTH - Royal Institute of Technology, 100 44 Stockholm, Sweden and LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
Inverse Probl. 2017 Mar;33(3). doi: 10.1088/1361-6420/aa55af. Epub 2017 Feb 1.
We introduce a reconstruction framework that can account for shape related a priori information in ill-posed linear inverse problems in imaging. It is a variational scheme that uses a shape functional defined using deformable templates machinery from shape theory. As proof of concept, we apply the proposed shape based reconstruction to 2D tomography with very sparse measurements, and demonstrate strong empirical results.
我们引入了一种重建框架,该框架可以在成像中的不适定线性逆问题中考虑与形状相关的先验信息。它是一种变分方案,使用基于形状理论中可变形模板机制定义的形状泛函。作为概念验证,我们将所提出的基于形状的重建方法应用于具有非常稀疏测量的二维断层扫描,并展示了强大的实证结果。