Suppr超能文献

使用集成光子器件的宽场高速空分复用光学相干断层扫描技术。

Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device.

作者信息

Huang Yongyang, Badar Mudabbir, Nitkowski Arthur, Weinroth Aaron, Tansu Nelson, Zhou Chao

机构信息

Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA.

Center for Photonics and Nanoelectronics, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA.

出版信息

Biomed Opt Express. 2017 Jul 28;8(8):3856-3867. doi: 10.1364/BOE.8.003856. eCollection 2017 Aug 1.

Abstract

Space-division multiplexing optical coherence tomography (SDM-OCT) is a recently developed parallel OCT imaging method in order to achieve multi-fold speed improvement. However, the assembly of fiber optics components used in the first prototype system was labor-intensive and susceptible to errors. Here, we demonstrate a high-speed SDM-OCT system using an integrated photonic chip that can be reliably manufactured with high precisions and low per-unit cost. A three-layer cascade of 1 × 2 splitters was integrated in the photonic chip to split the incident light into 8 parallel imaging channels with 3.7 mm optical delay in air between each channel. High-speed imaging (1s/volume) of porcine eyes ex vivo and wide-field imaging (~18.0 × 14.3 mm) of human fingers in vivo were demonstrated with the chip-based SDM-OCT system.

摘要

空分复用光学相干断层扫描(SDM-OCT)是一种最近开发的并行OCT成像方法,旨在实现数倍的速度提升。然而,首个原型系统中使用的光纤组件组装工作劳动强度大且容易出错。在此,我们展示了一种使用集成光子芯片的高速SDM-OCT系统,该芯片能够以高精度和低单位成本可靠制造。在光子芯片中集成了一个三层级联的1×2分光器,将入射光分成8个并行成像通道,每个通道之间在空气中的光学延迟约为3.7毫米。基于芯片的SDM-OCT系统实现了对离体猪眼的高速成像(约1秒/体积)以及对活体人手指的宽视野成像(约18.0×14.3毫米)。

相似文献

1
Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device.
Biomed Opt Express. 2017 Jul 28;8(8):3856-3867. doi: 10.1364/BOE.8.003856. eCollection 2017 Aug 1.
2
Space-division multiplexing optical coherence tomography.
Opt Express. 2013 Aug 12;21(16):19219-27. doi: 10.1364/OE.21.019219.
3
Wide-field Ophthalmic Space-Division Multiplexing Optical Coherence Tomography.
Photonics Res. 2020 Apr;8(4):539-547. doi: 10.1364/PRJ.383034.
4
Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography.
Biomed Opt Express. 2014 Mar 3;5(4):1050-61. doi: 10.1364/BOE.5.001050. eCollection 2014 Apr 1.
5
Full-range space-division multiplexing optical coherence tomography angiography.
Biomed Opt Express. 2020 Jul 31;11(8):4817-4834. doi: 10.1364/BOE.400162. eCollection 2020 Aug 1.
6
Optical coherence tomography system mass-producible on a silicon photonic chip.
Opt Express. 2016 Jan 25;24(2):1573-86. doi: 10.1364/OE.24.001573.
8
Adaptive optics optical coherence tomography at 1 MHz.
Biomed Opt Express. 2014 Nov 6;5(12):4186-200. doi: 10.1364/BOE.5.004186. eCollection 2014 Dec 1.
9
A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography.
Biomed Opt Express. 2014 Aug 6;5(9):2978-87. doi: 10.1364/BOE.5.002978. eCollection 2014 Sep 1.

引用本文的文献

1
High dynamic range 3D motion tracking using circular scans with optical coherence tomography.
Biomed Opt Express. 2023 Jul 6;14(8):3881-3898. doi: 10.1364/BOE.493725. eCollection 2023 Aug 1.
2
Visually guided chick ocular length and structural thickness variations assessed by swept-source optical coherence tomography.
Biomed Opt Express. 2021 Oct 13;12(11):6864-6881. doi: 10.1364/BOE.433333. eCollection 2021 Nov 1.
3
Wide-field Ophthalmic Space-Division Multiplexing Optical Coherence Tomography.
Photonics Res. 2020 Apr;8(4):539-547. doi: 10.1364/PRJ.383034.
5
Multi-beam OCT imaging based on an integrated, free-space interferometer.
Biomed Opt Express. 2020 Dec 8;12(1):100-109. doi: 10.1364/BOE.408703. eCollection 2021 Jan 1.
6
Multi-meridian corneal imaging of air-puff induced deformation for improved detection of biomechanical abnormalities.
Biomed Opt Express. 2020 Oct 14;11(11):6337-6355. doi: 10.1364/BOE.402402. eCollection 2020 Nov 1.
7
Full-range space-division multiplexing optical coherence tomography angiography.
Biomed Opt Express. 2020 Jul 31;11(8):4817-4834. doi: 10.1364/BOE.400162. eCollection 2020 Aug 1.
8
Concept for Markerless 6D Tracking Employing Volumetric Optical Coherence Tomography.
Sensors (Basel). 2020 May 8;20(9):2678. doi: 10.3390/s20092678.

本文引用的文献

1
High-speed OCT light sources and systems [Invited].
Biomed Opt Express. 2017 Jan 13;8(2):828-859. doi: 10.1364/BOE.8.000828. eCollection 2017 Feb 1.
2
Cubic meter volume optical coherence tomography.
Optica. 2016 Dec;3(12):1496-1503. doi: 10.1364/OPTICA.3.001496. Epub 2016 Dec 15.
4
Long-range and wide field of view optical coherence tomography for 3D imaging of large volume object based on akinetic programmable swept source.
Biomed Opt Express. 2016 Oct 27;7(11):4734-4748. doi: 10.1364/BOE.7.004734. eCollection 2016 Nov 1.
6
The Development, Commercialization, and Impact of Optical Coherence Tomography.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT1-OCT13. doi: 10.1167/iovs.16-19963.
7
Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications.
Biomed Opt Express. 2016 Apr 18;7(5):1905-19. doi: 10.1364/BOE.7.001905. eCollection 2016 May 1.
9
Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography.
Biomed Opt Express. 2015 Nov 23;6(12):5021-32. doi: 10.1364/BOE.6.005021. eCollection 2015 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验