Suppr超能文献

爱泼沃斯思睡量表和 STOP-Bang 模型在预测阻塞性睡眠呼吸暂停(OSA)的严重程度方面是否有效;特别是预测需要治疗的 OSA 的严重程度?

Are the Epworth Sleepiness Scale and Stop-Bang model effective at predicting the severity of obstructive sleep apnoea (OSA); in particular OSA requiring treatment?

作者信息

Panchasara Binita, Poots Alan J, Davies Gary

机构信息

Acute Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London, UK.

Department of Medicine, Imperial College London, London, UK.

出版信息

Eur Arch Otorhinolaryngol. 2017 Dec;274(12):4233-4239. doi: 10.1007/s00405-017-4725-2. Epub 2017 Aug 30.

Abstract

Obstructive sleep apnoea (OSA) is a condition characterised by repetitive upper airway collapse during sleep. The condition carries a range of health sequelae that can prove fatal in cases with co-existing risk factors for the condition, such as obesity and hypertension. Utilisation of a high-performance screening tool for OSA is thus important. A retrospective audit using the ESS and Stop-Bang scores, alongside Apnoea-Hypopnea Index values, for patients who underwent polysomnography over 1 year. Multinomial logistic regression was used to compare the predictive abilities of ESS, SBM, and body mass index (BMI) for the patient outcome groups, "None" (No OSA), "Notreat" (OSA not requiring treatment) and "treat" (OSA requiring treatment). The influences of age, gender and BMI on outcome group were also assessed. 126 bariatric and 66 non-bariatric patients were included. Multinomial logistic regression failed to demonstrate predictive ability of ESS. A higher Stop-Bang score significantly increases the risk being in the "treat" group. In addition, male gender, greater age and a higher BMI each individually increase the risk of OSA requiring treatment. Stop-Bang failed to demonstrate predictive significance when age and gender were controlled for. ESS is not an appropriate screening tool for OSA. Stop-Bang, however, remains a useful screening tool, with the ability to detect patient with OSA in need of treatment. Further study may benefit the development and implementation of a concise and more specific screening tool that considers high evidence-based risk factors for OSA, including male gender, greater age and raised BMI.

摘要

阻塞性睡眠呼吸暂停(OSA)是一种以睡眠期间上呼吸道反复塌陷为特征的病症。该病症会带来一系列健康后果,在存在肥胖和高血压等该病症共存风险因素的情况下可能会致命。因此,使用高性能的OSA筛查工具很重要。对在1年多时间里接受多导睡眠图检查的患者,采用Epworth嗜睡量表(ESS)和阻塞性睡眠呼吸暂停筛查问卷(Stop-Bang)评分以及呼吸暂停低通气指数值进行回顾性审计。采用多项逻辑回归来比较ESS、SBM(疑为Stop-Bang,原文有误)和体重指数(BMI)对患者结局组“无”(无OSA)、“无需治疗”(OSA无需治疗)和“需治疗”(OSA需要治疗)的预测能力。还评估了年龄、性别和BMI对结局组的影响。纳入了126例肥胖症患者和66例非肥胖症患者。多项逻辑回归未能证明ESS的预测能力。较高的Stop-Bang评分显著增加了处于“需治疗”组的风险。此外,男性、年龄较大和BMI较高各自都会增加OSA需要治疗的风险。在控制年龄和性别后,Stop-Bang未能显示出预测意义。ESS不是OSA的合适筛查工具。然而,Stop-Bang仍然是一种有用的筛查工具,能够检测出需要治疗的OSA患者。进一步的研究可能有助于开发和实施一种简洁且更具特异性的筛查工具,该工具考虑到基于高证据的OSA风险因素,包括男性、年龄较大和BMI升高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验