United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA.
Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
Plant J. 2017 Nov;92(4):571-583. doi: 10.1111/tpj.13675. Epub 2017 Oct 9.
Among the wheat prolamins important for its end-use traits, α-gliadins are the most abundant, and are also a major cause of food-related allergies and intolerances. Previous studies of various wheat species estimated that between 25 and 150 α-gliadin genes reside in the Gli-2 locus regions. To better understand the evolution of this complex gene family, the DNA sequence of a 1.75-Mb genomic region spanning the Gli-2 locus was analyzed in the diploid grass, Aegilops tauschii, the ancestral source of D genome in hexaploid bread wheat. Comparison with orthologous regions from rice, sorghum, and Brachypodium revealed rapid and dynamic changes only occurring to the Ae. tauschii Gli-2 region, including insertions of high numbers of non-syntenic genes and a high rate of tandem gene duplications, the latter of which have given rise to 12 copies of α-gliadin genes clustered within a 550-kb region. Among them, five copies have undergone pseudogenization by various mutation events. Insights into the evolutionary relationship of the duplicated α-gliadin genes were obtained from their genomic organization, transcription patterns, transposable element insertions and phylogenetic analyses. An ancestral glutamate-like receptor (GLR) gene encoding putative amino acid sensor in all four grass species has duplicated only in Ae. tauschii and generated three more copies that are interspersed with the α-gliadin genes. Phylogenetic inference and different gene expression patterns support functional divergence of the Ae. tauschii GLR copies after duplication. Our results suggest that the duplicates of α-gliadin and GLR genes have likely taken different evolutionary paths; conservation for the former and neofunctionalization for the latter.
在对小麦加工品质起重要作用的醇溶蛋白中,α-麦醇溶蛋白含量最丰富,也是引起食物过敏和不耐受的主要原因。对不同小麦物种的研究估计,25 到 150 个α-麦醇溶蛋白基因位于Gli-2 基因座区域。为了更好地了解这个复杂基因家族的进化,我们对二倍体植物节节麦的 Gli-2 基因座区域的 1.75Mb 基因组序列进行了分析,节节麦是六倍体普通小麦 D 基因组的祖先。与水稻、高粱和柳枝稷的同源区域进行比较,结果表明只有 Ae. tauschii 的 Gli-2 区域发生了快速而动态的变化,包括大量非同源基因的插入和串联基因的高倍重复,后者导致 12 个α-麦醇溶蛋白基因簇集在 550kb 区域内。其中,有 5 个拷贝由于各种突变事件而发生了假基因化。通过对重复的α-麦醇溶蛋白基因的基因组组织、转录模式、转座元件插入和系统发育分析,我们获得了对其进化关系的深入了解。在这四个禾本科植物中,一个谷氨酸样受体 (GLR) 基因发生了复制,该基因编码假定的氨基酸感受器,但只在节节麦中发生了复制,并产生了三个与α-麦醇溶蛋白基因交错的拷贝。系统发育推断和不同的基因表达模式支持 Ae. tauschii GLR 拷贝在复制后的功能分化。我们的研究结果表明,α-麦醇溶蛋白和 GLR 基因的拷贝可能走了不同的进化道路;前者保守,后者新功能化。