Suppr超能文献

铜绿假单胞菌反硝化过程中蛋白质复合物的形成。

Protein complex formation during denitrification by Pseudomonas aeruginosa.

机构信息

Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, Braunschweig, Germany.

Braunschweig Integrated Centre of Systems Biology BRICS, Technische Universität Braunschweig, Rebenring 56, Braunschweig, Germany.

出版信息

Microb Biotechnol. 2017 Nov;10(6):1523-1534. doi: 10.1111/1751-7915.12851. Epub 2017 Aug 31.

Abstract

The most efficient means of generating cellular energy is through aerobic respiration. Under anaerobic conditions, several prokaryotes can replace oxygen by nitrate as final electron acceptor. During denitrification, nitrate is reduced via nitrite, NO and N O to molecular nitrogen (N ) by four membrane-localized reductases with the simultaneous formation of an ion gradient for ATP synthesis. These four multisubunit enzyme complexes are coupled in four electron transport chains to electron donating primary dehydrogenases and intermediate electron transfer proteins. Many components require membrane transport and insertion, complex assembly and cofactor incorporation. All these processes are mediated by fine-tuned stable and transient protein-protein interactions. Recently, an interactomic approach was used to determine the exact protein-protein interactions involved in the assembly of the denitrification apparatus of Pseudomonas aeruginosa. Both subunits of the NO reductase NorBC, combined with the flavoprotein NosR, serve as a membrane-localized assembly platform for the attachment of the nitrate reductase NarGHI, the periplasmic nitrite reductase NirS via its maturation factor NirF and the N O reductase NosZ through NosR. A nitrate transporter (NarK2), the corresponding regulatory system NarXL, various nitrite (NirEJMNQ) and N O reductase (NosFL) maturation proteins are also part of the complex. Primary dehydrogenases, ATP synthase, most enzymes of the TCA cycle, and the SEC protein export system, as well as a number of other proteins, were found to interact with the denitrification complex. Finally, a protein complex composed of the flagella protein FliC, nitrite reductase NirS and the chaperone DnaK required for flagella formation was found in the periplasm of P. aeruginosa. This work demonstrated that the interactomic approach allows for the identification and characterization of stable and transient protein-protein complexes and interactions involved in the assembly and function of multi-enzyme complexes.

摘要

产生细胞能量最有效的方法是通过有氧呼吸。在无氧条件下,一些原核生物可以用硝酸盐替代氧气作为最终电子受体。在反硝化过程中,硝酸盐通过亚硝酸盐、一氧化氮和一氧化二氮被还原为氮气(N2),这是由四个定位于膜上的还原酶完成的,同时形成一个用于 ATP 合成的离子梯度。这四个多亚基酶复合物通过电子供体初级脱氢酶和中间电子转移蛋白与四个电子传递链耦合。许多组件需要膜运输和插入、复杂组装和辅助因子掺入。所有这些过程都由精细调节的稳定和瞬态蛋白-蛋白相互作用介导。最近,一种相互作用组学方法被用于确定与铜绿假单胞菌反硝化装置组装相关的确切蛋白-蛋白相互作用。NO 还原酶 NorBC 的两个亚基,与黄素蛋白 NosR 结合,作为硝酸盐还原酶 NarGHI、通过其成熟因子 NirF 连接的周质亚硝酸盐还原酶 NirS 和通过 NosR 连接的 N O 还原酶 NosZ 的附着的膜定位组装平台。硝酸盐转运蛋白(NarK2)、相应的调节系统 NarXL、各种亚硝酸盐(NirEJMNQ)和 N O 还原酶(NosFL)成熟蛋白也是该复合物的一部分。初级脱氢酶、ATP 合酶、TCA 循环的大多数酶、SEC 蛋白输出系统以及许多其他蛋白质被发现与反硝化复合物相互作用。最后,在铜绿假单胞菌的周质中发现了一个由鞭毛蛋白 FliC、亚硝酸盐还原酶 NirS 和鞭毛形成所需的伴侣蛋白 DnaK 组成的蛋白质复合物。这项工作表明,相互作用组学方法允许识别和表征参与多酶复合物组装和功能的稳定和瞬态蛋白-蛋白复合物和相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6a9/5658584/2abaa260428e/MBT2-10-1523-g001.jpg

相似文献

1
Protein complex formation during denitrification by Pseudomonas aeruginosa.
Microb Biotechnol. 2017 Nov;10(6):1523-1534. doi: 10.1111/1751-7915.12851. Epub 2017 Aug 31.
2
Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus.
J Bacteriol. 2016 Apr 14;198(9):1401-13. doi: 10.1128/JB.00055-16. Print 2016 May.
4
Localization of denitrification genes on the chromosomal map of Pseudomonas aeruginosa.
Microbiology (Reading). 1998 Feb;144 ( Pt 2):441-448. doi: 10.1099/00221287-144-2-441.
5
Fine-tuned regulation of the dissimilatory nitrite reductase gene by oxygen and nitric oxide in Pseudomonas aeruginosa.
Environ Microbiol Rep. 2014 Dec;6(6):792-801. doi: 10.1111/1758-2229.12212. Epub 2014 Oct 23.
9
Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms.
J Bacteriol. 2018 Apr 9;200(9). doi: 10.1128/JB.00031-18. Print 2018 May 1.
10
Expression of a fully functional cd1 nitrite reductase from Pseudomonas aeruginosa in Pseudomonas stutzeri.
Protein Expr Purif. 2003 Jan;27(1):42-8. doi: 10.1016/s1046-5928(02)00600-9.

引用本文的文献

1
Deciphering the molecular mechanisms underlying anti-pathogenic potential of a polyherbal formulation Enteropan® against multidrug-resistant .
Drug Target Insights. 2024 Aug 30;18:54-69. doi: 10.33393/dti.2024.3082. eCollection 2024 Jan-Dec.
4
MoaB1 Homologs Contribute to Biofilm Formation and Motility by Pseudomonas aeruginosa and Escherichia coli.
J Bacteriol. 2023 May 25;205(5):e0000423. doi: 10.1128/jb.00004-23. Epub 2023 Apr 26.
5
Genome-scale model of Pseudomonas aeruginosa metabolism unveils virulence and drug potentiation.
Commun Biol. 2023 Feb 10;6(1):165. doi: 10.1038/s42003-023-04540-8.
6
Pf4 Phage Variant Infection Reduces Virulence-Associated Traits in .
Microbiol Spectr. 2022 Oct 26;10(5):e0154822. doi: 10.1128/spectrum.01548-22. Epub 2022 Aug 29.
8
Ratio of Electron Donor to Acceptor Influences Metabolic Specialization and Denitrification Dynamics in in a Mixed Carbon Medium.
Front Microbiol. 2021 Sep 10;12:711073. doi: 10.3389/fmicb.2021.711073. eCollection 2021.
10
Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions.
Cell Mol Life Sci. 2021 Mar;78(5):1887-1907. doi: 10.1007/s00018-020-03684-8. Epub 2020 Oct 30.

本文引用的文献

1
Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance.
J Proteome Res. 2017 Apr 7;16(4):1410-1424. doi: 10.1021/acs.jproteome.6b00645. Epub 2017 Feb 28.
2
Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.
Microbiol Mol Biol Rev. 2017 Jan 25;81(1). doi: 10.1128/MMBR.00048-16. Print 2017 Mar.
3
Carbon Sources Tune Antibiotic Susceptibility in Pseudomonas aeruginosa via Tricarboxylic Acid Cycle Control.
Cell Chem Biol. 2017 Feb 16;24(2):195-206. doi: 10.1016/j.chembiol.2016.12.015. Epub 2017 Jan 19.
4
The flavinyl transferase ApbE of Pseudomonas stutzeri matures the NosR protein required for nitrous oxide reduction.
Biochim Biophys Acta Bioenerg. 2017 Feb;1858(2):95-102. doi: 10.1016/j.bbabio.2016.11.008. Epub 2016 Nov 15.
5
Amazing structure of respirasome: unveiling the secrets of cell respiration.
Protein Cell. 2016 Dec;7(12):854-865. doi: 10.1007/s13238-016-0329-7. Epub 2016 Oct 14.
6
Phenotypic shift in Pseudomonas aeruginosa populations from cystic fibrosis lungs after 2-week antipseudomonal treatment.
J Cyst Fibros. 2017 Mar;16(2):222-229. doi: 10.1016/j.jcf.2016.08.005. Epub 2016 Sep 17.
7
Structural Framework for Metal Incorporation during Molybdenum Cofactor Biosynthesis.
Structure. 2016 May 3;24(5):782-788. doi: 10.1016/j.str.2016.02.023. Epub 2016 Apr 21.
8
Exploring membrane respiratory chains.
Biochim Biophys Acta. 2016 Aug;1857(8):1039-1067. doi: 10.1016/j.bbabio.2016.03.028. Epub 2016 Apr 20.
9
Coenzyme Q biosynthesis and its role in the respiratory chain structure.
Biochim Biophys Acta. 2016 Aug;1857(8):1073-1078. doi: 10.1016/j.bbabio.2016.03.010. Epub 2016 Mar 10.
10
Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus.
J Bacteriol. 2016 Apr 14;198(9):1401-13. doi: 10.1128/JB.00055-16. Print 2016 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验