Suppr超能文献

碳源通过三羧酸循环控制调节铜绿假单胞菌对抗生素的敏感性。

Carbon Sources Tune Antibiotic Susceptibility in Pseudomonas aeruginosa via Tricarboxylic Acid Cycle Control.

机构信息

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Biological Engineering, Institute for Medical Engineering & Science, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA.

Department of Biological Engineering, Institute for Medical Engineering & Science, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Cell Chem Biol. 2017 Feb 16;24(2):195-206. doi: 10.1016/j.chembiol.2016.12.015. Epub 2017 Jan 19.

Abstract

Metabolically dormant bacteria present a critical challenge to effective antimicrobial therapy because these bacteria are genetically susceptible to antibiotic treatment but phenotypically tolerant. Such tolerance has been attributed to impaired drug uptake, which can be reversed by metabolic stimulation. Here, we evaluate the effects of central carbon metabolite stimulations on aminoglycoside sensitivity in the pathogen Pseudomonas aeruginosa. We identify fumarate as a tobramycin potentiator that activates cellular respiration and generates a proton motive force by stimulating the tricarboxylic acid (TCA) cycle. In contrast, we find that glyoxylate induces phenotypic tolerance by inhibiting cellular respiration with acetyl-coenzyme A diversion through the glyoxylate shunt, despite drug import. Collectively, this work demonstrates that TCA cycle activity is important for both aminoglycoside uptake and downstream lethality and identifies a potential strategy for potentiating aminoglycoside treatment of P. aeruginosa infections.

摘要

代谢休眠的细菌对有效的抗菌治疗构成了重大挑战,因为这些细菌在遗传上易受抗生素治疗,但表型上耐受。这种耐受性归因于药物摄取受损,可通过代谢刺激来逆转。在这里,我们评估了中心碳代谢物刺激对病原菌铜绿假单胞菌中氨基糖苷类药物敏感性的影响。我们确定延胡索酸盐是一种妥布霉素增效剂,它通过刺激三羧酸 (TCA) 循环来激活细胞呼吸并产生质子动力。相比之下,我们发现尽管药物可以进入细胞,但乙醛酸盐通过乙酰辅酶 A 转移到乙醛酸支路来抑制细胞呼吸,从而诱导表型耐受。总的来说,这项工作表明 TCA 循环活性对氨基糖苷类药物的摄取和下游杀伤都很重要,并为增强铜绿假单胞菌感染的氨基糖苷类药物治疗提供了一种潜在策略。

相似文献

引用本文的文献

2
Vancomycin Sensitization in is Contingent on Limited Metabolic Flux.中的万古霉素致敏取决于有限的代谢通量。
ACS Infect Dis. 2025 Aug 8;11(8):2169-2177. doi: 10.1021/acsinfecdis.5c00225. Epub 2025 Jul 17.

本文引用的文献

3
Role of Glyoxylate Shunt in Oxidative Stress Response.乙醛酸循环在氧化应激反应中的作用。
J Biol Chem. 2016 May 27;291(22):11928-38. doi: 10.1074/jbc.M115.708149. Epub 2016 Apr 1.
4
Antibiotic efficacy is linked to bacterial cellular respiration.抗生素疗效与细菌细胞呼吸相关。
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8173-80. doi: 10.1073/pnas.1509743112. Epub 2015 Jun 22.
6
Molecular mechanisms of antibiotic resistance.抗生素耐药性的分子机制。
Nat Rev Microbiol. 2015 Jan;13(1):42-51. doi: 10.1038/nrmicro3380. Epub 2014 Dec 1.
7
Unraveling the physiological complexities of antibiotic lethality.揭示抗生素致死性的生理复杂性。
Annu Rev Pharmacol Toxicol. 2015;55:313-32. doi: 10.1146/annurev-pharmtox-010814-124712. Epub 2014 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验