Riccardi Enrico, Dahlen Oda, van Erp Titus S
Department of Chemistry, Norwegian University of Science and Technology , NO-7491 Trondheim, Norway.
J Phys Chem Lett. 2017 Sep 21;8(18):4456-4460. doi: 10.1021/acs.jpclett.7b01617. Epub 2017 Sep 6.
Many relevant processes in chemistry, physics, and biology are rare events from a computational perspective as they take place beyond the accessible time scale of molecular dynamics (MD). Examples are chemical reactions, nucleation, and conformational changes of biomolecules. Path sampling is an approach to break this time scale limit via a Monte Carlo (MC) sampling of MD trajectories. Still, many trajectories are needed for accurately predicting rate constants. To improve the speed of convergence, we propose two new MC moves, stone skipping and web throwing. In these moves, trajectories are constructed via a sequence of subpaths obeying superdetailed balance. By a reweighting procedure, almost all paths can be accepted. Whereas the generation of a single trajectory becomes more expensive, the reduced correlation results in a significant speedup. For a study on DNA denaturation, the increase was found to be a factor 12.
从计算的角度来看,化学、物理和生物学中的许多相关过程都是罕见事件,因为它们发生在分子动力学(MD)可及的时间尺度之外。例如化学反应、成核以及生物分子的构象变化。路径采样是一种通过对MD轨迹进行蒙特卡罗(MC)采样来突破这种时间尺度限制的方法。然而,为了准确预测速率常数,仍需要许多轨迹。为了提高收敛速度,我们提出了两种新的MC移动,即“打水漂”和“抛网”。在这些移动中,轨迹是通过一系列服从超细致平衡的子路径构建的。通过重新加权过程,几乎所有路径都可以被接受。虽然生成单个轨迹的成本变得更高,但相关性的降低导致了显著的加速。对于一项关于DNA变性的研究,发现加速因子为12。