Suppr超能文献

首次植入硅纳米孔膜血液滤过器。

First Implantation of Silicon Nanopore Membrane Hemofilters.

作者信息

Kensinger Clark, Karp Seth, Kant Rishi, Chui Benjamin W, Goldman Kenneth, Yeager Torin, Gould Edward R, Buck Amanda, Laneve David C, Groszek Joseph J, Roy Shuvo, Fissell William H

机构信息

From the *Department of Surgery, Vanderbilt University, Nashville, Tennessee; †Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California; ‡Ben Chui Consulting, Sunnyvale, California; §H-Cubed, Inc., Olmsted Falls, Ohio; Departments of ¶Nephrology and Hypertension, ‖Surgery, #Radiology and Radiological Sciences, and **Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.

出版信息

ASAIO J. 2016 Jul-Aug;62(4):491-5. doi: 10.1097/MAT.0000000000000367.

Abstract

An implantable hemofilter for the treatment of kidney failure depends critically on the transport characteristics of the membrane and the biocompatibility of the membrane, cartridge, and blood conduits. A novel membrane with slit-shaped pores optimizes the trade-off between permeability and selectivity, enabling implanted therapy. Sustained (3-8) day function of an implanted parallel-plate hemofilter with minimal anticoagulation was achieved by considering biocompatibility at the subnanometer scale of chemical interactions and the millimeter scale of blood fluid dynamics. A total of 400 nm-thick polysilicon flat sheet membranes with 5-8 nm × 2 micron slit-shaped pores were surface-modified with polyethylene glycol. Hemofilter cartridge geometries were refined based on computational fluid dynamics models of blood flow. In an uncontrolled pilot study, silicon filters were implanted in six class A dogs. Cartridges were connected to the cardiovascular system by anastamoses to the aorta and inferior vena cava and filtrate was drained to collection pouches positioned in the peritoneum. Pain medicine and acetylsalicylic acid were administered twice daily until the hemofilters were harvested on postoperative days 3 (n = 2), 4 (n = 2), 5 (n = 1), and 8 (n = 1). No hemofilters were thrombosed. Animals treated for 5 and 8 days had microscopic fractures in the silicon nanopore membranes and 20-50 ml of transudative (albumin sieving coefficient θalb ~ 0.5 - 0.7) fluid in the collection pouches at the time of explant. Shorter experimental durations (3-4 days) resulted in filtration volumes similar to predictions based on mean arterial pressures and membrane hydraulic permeability and (θalb ~ 0.2 - 0.3), similar to preimplantation measurements. In conclusion, a detailed mechanistic and materials science attention to blood-material interactions allows implanted hemofilters to resist thrombosis. Additional testing is needed to determine optimal membrane characteristics and identify limiting factors in long-term implantation.

摘要

一种用于治疗肾衰竭的可植入血液滤过器,其性能关键取决于膜的传输特性以及膜、滤筒和血液导管的生物相容性。一种具有狭缝形孔的新型膜优化了渗透性和选择性之间的权衡,从而实现植入式治疗。通过在化学相互作用的亚纳米尺度和血液流体动力学的毫米尺度上考虑生物相容性,实现了植入式平行板血液滤过器在最小抗凝情况下持续(3 - 8)天的功能。对总共400纳米厚、具有5 - 8纳米×2微米狭缝形孔的多晶硅平板膜进行了聚乙二醇表面改性。基于血流的计算流体动力学模型对血液滤过器滤筒的几何形状进行了优化。在一项非对照的初步研究中,将硅滤器植入6只A类犬体内。滤筒通过与主动脉和下腔静脉的吻合连接到心血管系统,滤液引流到位于腹膜内的收集袋中。每天两次给予止痛药和乙酰水杨酸,直到在术后第3天(n = 2)、第4天(n = 2)、第5天(n = 1)和第8天(n = 1)取出血液滤过器。没有血液滤过器发生血栓形成。接受治疗5天和8天的动物,其硅纳米孔膜出现微观破裂,取出时收集袋中有20 - 50毫升渗出液(白蛋白筛分系数θalb约为0.5 - 0.7)。较短的实验持续时间(3 - 4天)导致过滤体积与基于平均动脉压和膜水力渗透率的预测值相似(θalb约为0.2 - 0.3),与植入前测量值相似。总之,对血液 - 材料相互作用给予详细的机理和材料科学关注,可使植入式血液滤过器抵抗血栓形成。需要进行额外测试以确定最佳膜特性并识别长期植入中的限制因素。

相似文献

1
First Implantation of Silicon Nanopore Membrane Hemofilters.
ASAIO J. 2016 Jul-Aug;62(4):491-5. doi: 10.1097/MAT.0000000000000367.
2
Slit pores preferred over cylindrical pores for high selectivity in biomolecular filtration.
J Colloid Interface Sci. 2018 May 1;517:176-181. doi: 10.1016/j.jcis.2017.12.056. Epub 2017 Dec 20.
3
High-Performance Silicon Nanopore Hemofiltration Membranes.
J Memb Sci. 2009 Jan 5;326(1):58-63. doi: 10.1016/j.memsci.2008.09.039.
4
Permeability decay in CAVH hemofilters.
ASAIO Trans. 1988 Jul-Sep;34(3):590-3.
5
Long-term performance of hemofilters in continuous hemofiltration.
Nephron. 1996;72(2):155-8. doi: 10.1159/000188834.
6
Hemofilter reuse in maintenance hemofiltration.
Blood Purif. 1987;5(4):256-61. doi: 10.1159/000169474.
7
Development of continuous implantable renal replacement: past and future.
Transl Res. 2007 Dec;150(6):327-36. doi: 10.1016/j.trsl.2007.06.001. Epub 2007 Jul 2.
8
Thrombogenicity and long-term cytokine removal capability of a novel asymmetric triacetate membrane hemofilter.
J Artif Organs. 2018 Dec;21(4):435-442. doi: 10.1007/s10047-018-1062-1. Epub 2018 Jul 24.
9
In vitro Evaluation of Linezolid and Doripenem Clearance with Different Hemofilters.
Blood Purif. 2020;49(3):295-301. doi: 10.1159/000504039. Epub 2020 Jan 29.

引用本文的文献

3
Antifouling Zwitterionic Polymer Coatings for Blood-Bearing Medical Devices.
Langmuir. 2025 Feb 11;41(5):2994-3006. doi: 10.1021/acs.langmuir.4c04532. Epub 2025 Jan 27.
6
Feasibility of an implantable bioreactor for renal cell therapy using silicon nanopore membranes.
Nat Commun. 2023 Aug 29;14(1):4890. doi: 10.1038/s41467-023-39888-2.
7
Advances in hemodialysis therapy.
Fac Rev. 2023 May 16;12:12. doi: 10.12703/r/12-12. eCollection 2023.
8
Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges.
Nat Rev Nephrol. 2023 Aug;19(8):481-490. doi: 10.1038/s41581-023-00726-9. Epub 2023 Jun 5.
9
Could implantable artificial kidneys end the need for dialysis?
Nature. 2023 Mar;615(7951):S12-S13. doi: 10.1038/d41586-023-00653-6.
10
Novel strategies in nephrology: what to expect from the future?
Clin Kidney J. 2022 Sep 20;16(2):230-244. doi: 10.1093/ckj/sfac212. eCollection 2023 Feb.

本文引用的文献

1
Hemocompatibility of silicon-based substrates for biomedical implant applications.
Ann Biomed Eng. 2011 Apr;39(4):1296-305. doi: 10.1007/s10439-011-0256-y. Epub 2011 Feb 2.
2
Peritoneal albumin and protein losses do not predict outcome in peritoneal dialysis patients.
Clin J Am Soc Nephrol. 2011 Mar;6(3):561-6. doi: 10.2215/CJN.05540610. Epub 2010 Nov 11.
3
Anti-biofouling Sulfobetaine Polymer Thin Films on Silicon and Silicon Nanopore Membranes.
J Biomater Sci Polym Ed. 2011;22(1-3):91-106. doi: 10.1163/092050609X12578498982998.
4
Silicon induces minimal thromboinflammatory response during 28-day intravascular implant testing.
ASAIO J. 2010 Jul-Aug;56(4):344-8. doi: 10.1097/MAT.0b013e3181d98cf8.
6
Permeability - Selectivity Analysis for Ultrafiltration: Effect of Pore Geometry.
J Memb Sci. 2010 Mar 1;349(1-2):405. doi: 10.1016/j.memsci.2009.12.003.
7
High-Performance Silicon Nanopore Hemofiltration Membranes.
J Memb Sci. 2009 Jan 5;326(1):58-63. doi: 10.1016/j.memsci.2008.09.039.
8
Efficacy and safety of renal tubule cell therapy for acute renal failure.
J Am Soc Nephrol. 2008 May;19(5):1034-40. doi: 10.1681/ASN.2007080895. Epub 2008 Feb 13.
10
Ficoll is not a rigid sphere.
Am J Physiol Renal Physiol. 2007 Oct;293(4):F1209-13. doi: 10.1152/ajprenal.00097.2007. Epub 2007 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验