Suppr超能文献

阳极环化反应和实现优化的机制策略。

Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.

机构信息

Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States.

出版信息

Acc Chem Res. 2017 Sep 19;50(9):2346-2352. doi: 10.1021/acs.accounts.7b00287. Epub 2017 Aug 31.

Abstract

Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial cyclization reaction leading to either polymerization of the radical cation, elimination of a proton from or solvent trapping of that intermediate, or solvent trapping of the radical cation can be identified in the proton NMR spectrum of the crude reaction material. Such an NMR spectrum shows retention of the trapping group. The problems can be addressed by tuning the radical cation, altering the trapping group, or channeling the reactive intermediate down a radical pathway. Specific examples each are shown in this Account. Problems with the second oxidation step can be identified by poor current efficiency or general decomposition in spite of cyclic voltammetry evidence for a rapid cyclization. Solutions involve improving the oxidation conditions for the radical after cyclization by either the addition of a properly placed electron-donating group in the substrate or an increase in the concentration of electrolyte in the reaction (a change that stabilizes the cation generated from the second oxidation step). Problems with the final cation typically lead to overoxidation. Solutions to this problem require an approach that either slows down elimination side reactions or changes the reaction conditions so that the cation can be quickly trapped in an irreversible fashion. Again, this Account highlights these strategies along with the specific experimental protocols utilized.

摘要

氧化反应是合成的有力工具,因为它们允许我们反转富电子官能团的极性,生成高反应性的中间体,并增加分子的功能。出于这个原因,氧化反应一直是并且仍然是研究的主题。这些努力的核心是开发基于机制的策略,使我们能够思考那些经常是反应成功的核心的反应中间体和触发这些中间体的反应途径。例如,考虑由从富电子烯烃中除去一个电子引发的氧化环化反应,这些反应导致功能化的环状产物,可进一步进行精细化处理。为了使这些反应成功,必须使用限制其聚合的条件首先生成自由基阳离子中间体,然后将其引导到一个有希望的产物途径上。环化后,需要进行第二步氧化以形成产物,之后必须以受控的方式猝灭生成的阳离子,以避免不希望的消除反应。在这些步骤中的任何一个或所有步骤都可能出现问题,这一事实经常使反应优化复杂化,并阻碍新转化的发展。幸运的是,阳极电化学提供了一个极好的机会,可以系统地研究氧化环化反应的机制。电化学方法的使用允许在有助于防止中间体聚合的中性条件下生成自由基阳离子。一旦生成了中间体,可以使用一系列“明显的指标”来诊断哪个步骤是导致转化效果不佳的问题所在。已经开发了一套解决每种类型问题的潜在解决方案。例如,初始环化反应导致自由基阳离子聚合、从中间体中消除质子或溶剂捕获该中间体、或自由基阳离子溶剂捕获的问题,可以从粗反应物料的质子 NMR 谱中识别出来。这样的 NMR 谱显示出捕获基团的保留。可以通过调整自由基阳离子、改变捕获基团或引导反应中间体沿自由基途径进行来解决这些问题。本账户中每个都展示了具体的例子。尽管循环伏安法证明环化反应迅速,但电流效率差或普遍分解表明第二步氧化反应存在问题。可以通过在底物中添加适当位置的供电子基团或增加反应中电解质的浓度(这一变化稳定了来自第二步氧化的阳离子)来改善环化后自由基的氧化条件,从而解决该问题。最后阳离子的问题通常导致过度氧化。解决这个问题需要一种方法,要么减缓消除副反应,要么改变反应条件,以便阳离子可以以不可逆的方式快速捕获。同样,本账户突出了这些策略以及所使用的具体实验方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验