Suppr超能文献

一种利用计算机断层扫描图像测定内脏脂肪组织体积的快速且可靠方法的开发与验证

Development and validation of a rapid and robust method to determine visceral adipose tissue volume using computed tomography images.

作者信息

Parikh Aaroh M, Coletta Adriana M, Yu Z Henry, Rauch Gaiane M, Cheung Joey P, Court Laurence E, Klopp Ann H

机构信息

Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America.

Department of Behavioral Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America.

出版信息

PLoS One. 2017 Aug 31;12(8):e0183515. doi: 10.1371/journal.pone.0183515. eCollection 2017.

Abstract

BACKGROUND

Visceral adiposity is a risk factor for many chronic diseases. Existing methods to quantify visceral adipose tissue volume using computed tomographic (CT) images often use a single slice, are manual, and are time consuming, making them impractical for large population studies. We developed and validated a method to accurately, rapidly, and robustly measure visceral adipose tissue volume using CT images.

METHODS

In-house software, Medical Executable for the Efficient and Robust Quantification of Adipose Tissue (MEERQAT), was developed to calculate visceral adipose tissue volume using a series of CT images within a manually identified region of interest. To distinguish visceral and subcutaneous adipose tissue, ellipses are drawn through the rectus abdominis and transverse abdominis using manual and automatic processes. Visceral and subcutaneous adipose tissue volumes are calculated by counting the numbers of voxels corresponding to adipose tissue in the region of interest. MEERQAT's ellipse interpolation method was validated by comparing visceral adipose volume from 10 patients' CT scans with corresponding results from manually delineated scans. Accuracy of visceral adipose quantification was tested using a phantom consisting of animal fat and tissues. Robustness of the method was tested by determining intra-observer and inter-observer coefficients of variation (CV).

RESULTS

The mean difference in visceral adipose tissue volume between manual and elliptical delineation methods was -0.54 ± 4.81%. In the phantom, our measurement differed from the known adipose volume by ≤ 7.5% for all scanning parameters. Mean inter-observer CV for visceral adipose tissue volume was 0.085, and mean intra-observer CV for visceral adipose tissue volume was 0.059.

CONCLUSIONS

We have developed and validated a robust method of accurately and quickly determining visceral adipose tissue volume in any defined region of interest using CT imaging.

摘要

背景

内脏脂肪过多是多种慢性疾病的危险因素。现有的利用计算机断层扫描(CT)图像量化内脏脂肪组织体积的方法通常采用单一层面,需手动操作且耗时,不适用于大规模人群研究。我们开发并验证了一种利用CT图像准确、快速且稳健地测量内脏脂肪组织体积的方法。

方法

开发了内部软件——高效稳健的脂肪组织量化医学可执行程序(MEERQAT),用于在手动识别的感兴趣区域内利用一系列CT图像计算内脏脂肪组织体积。为区分内脏和皮下脂肪组织,通过手动和自动过程在腹直肌和腹横肌上绘制椭圆。通过计算感兴趣区域内与脂肪组织对应的体素数量来计算内脏和皮下脂肪组织体积。通过比较10例患者CT扫描的内脏脂肪体积与手动勾勒扫描的相应结果,验证了MEERQAT的椭圆插值方法。使用由动物脂肪和组织组成的模型测试内脏脂肪量化的准确性。通过确定观察者内和观察者间变异系数(CV)来测试该方法的稳健性。

结果

手动和椭圆勾勒方法之间内脏脂肪组织体积的平均差异为-0.54±4.81%。在模型中,对于所有扫描参数,我们的测量值与已知脂肪体积的差异≤7.5%。内脏脂肪组织体积的观察者间平均CV为0.085,观察者内平均CV为0.059。

结论

我们开发并验证了一种稳健的方法,可利用CT成像在任何定义的感兴趣区域准确、快速地确定内脏脂肪组织体积。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65fb/5578607/e9b5ba99c5c0/pone.0183515.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验