Suppr超能文献

潜在类别分析与 K-均值分析在识别具有不同症状体验的肿瘤患者中的一致性。

Congruence Between Latent Class and K-Modes Analyses in the Identification of Oncology Patients With Distinct Symptom Experiences.

机构信息

School of Health Sciences, University of Surrey, Guilford, UK.

School of Nursing, University of California, San Francisco, California, USA.

出版信息

J Pain Symptom Manage. 2018 Feb;55(2):318-333.e4. doi: 10.1016/j.jpainsymman.2017.08.020. Epub 2017 Aug 30.

Abstract

CONTEXT

Risk profiling of oncology patients based on their symptom experience assists clinicians to provide more personalized symptom management interventions. Recent findings suggest that oncology patients with distinct symptom profiles can be identified using a variety of analytic methods.

OBJECTIVES

The objective of this study was to evaluate the concordance between the number and types of subgroups of patients with distinct symptom profiles using latent class analysis and K-modes analysis.

METHODS

Using data on the occurrence of 25 symptoms from the Memorial Symptom Assessment Scale, that 1329 patients completed prior to their next dose of chemotherapy (CTX), Cohen's kappa coefficient was used to evaluate for concordance between the two analytic methods. For both latent class analysis and K-modes, differences among the subgroups in demographic, clinical, and symptom characteristics, as well as quality of life outcomes were determined using parametric and nonparametric statistics.

RESULTS

Using both analytic methods, four subgroups of patients with distinct symptom profiles were identified (i.e., all low, moderate physical and lower psychological, moderate physical and higher Psychological, and all high). The percent agreement between the two methods was 75.32%, which suggests a moderate level of agreement. In both analyses, patients in the all high group were significantly younger and had a higher comorbidity profile, worse Memorial Symptom Assessment Scale subscale scores, and poorer QOL outcomes.

CONCLUSION

Both analytic methods can be used to identify subgroups of oncology patients with distinct symptom profiles. Additional research is needed to determine which analytic methods and which dimension of the symptom experience provide the most sensitive and specific risk profiles.

摘要

背景

基于患者的症状体验对肿瘤患者进行风险评估有助于临床医生提供更个性化的症状管理干预措施。最近的研究结果表明,使用各种分析方法可以识别出具有不同症状特征的肿瘤患者。

目的

本研究旨在评估使用潜在类别分析和 K-模式分析识别具有不同症状特征的患者亚组数量和类型的一致性。

方法

使用 1329 名患者在接受下一次化疗(CTX)前完成的 Memorial Symptom Assessment Scale 上发生的 25 种症状的数据,使用 Cohen's kappa 系数评估两种分析方法之间的一致性。对于潜在类别分析和 K-模式,使用参数和非参数统计方法确定亚组在人口统计学、临床和症状特征以及生活质量结果方面的差异。

结果

使用两种分析方法,确定了具有不同症状特征的四个患者亚组(即所有低、中度身体和较低心理、中度身体和较高心理、以及所有高)。两种方法之间的百分比一致性为 75.32%,表明存在中等程度的一致性。在两种分析中,所有高组的患者明显更年轻,合并症谱更高,Memorial Symptom Assessment Scale 子量表评分更差,生活质量结果更差。

结论

两种分析方法均可用于识别具有不同症状特征的肿瘤患者亚组。需要进一步研究以确定哪种分析方法和症状体验的哪个维度提供最敏感和特异的风险特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0260/5794511/76987cacdd06/nihms902948f1.jpg

相似文献

6
Distinct symptom experiences in subgroups of patients with COPD.慢性阻塞性肺疾病(COPD)患者亚组中不同的症状体验。
Int J Chron Obstruct Pulmon Dis. 2016 Aug 2;11:1801-9. doi: 10.2147/COPD.S105299. eCollection 2016.
7
Distinct Physical Function Profiles in Older Adults Receiving Cancer Chemotherapy.老年癌症化疗患者的独特身体功能特征。
J Pain Symptom Manage. 2017 Sep;54(3):263-272. doi: 10.1016/j.jpainsymman.2017.07.018. Epub 2017 Jul 15.

引用本文的文献

9
Machine Learning and Antibiotic Management.机器学习与抗生素管理
Antibiotics (Basel). 2022 Feb 24;11(3):304. doi: 10.3390/antibiotics11030304.
10
Symptom Classes in Decompensated Liver Disease.失代偿期肝病的症状分类。
Clin Gastroenterol Hepatol. 2022 Nov;20(11):2551-2557.e1. doi: 10.1016/j.cgh.2021.11.023. Epub 2021 Nov 20.

本文引用的文献

4
Future Directions in Symptom Cluster Research.症状群研究的未来方向
Semin Oncol Nurs. 2016 Nov;32(4):405-415. doi: 10.1016/j.soncn.2016.08.006. Epub 2016 Oct 21.
9
Treating older adults with cancer: geriatric perspectives.老年癌症患者的治疗:老年医学视角
Am Soc Clin Oncol Educ Book. 2015:e544-52. doi: 10.14694/EdBook_AM.2015.35.e544.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验