文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习与抗生素管理

Machine Learning and Antibiotic Management.

作者信息

Maviglia Riccardo, Michi Teresa, Passaro Davide, Raggi Valeria, Bocci Maria Grazia, Piervincenzi Edoardo, Mercurio Giovanna, Lucente Monica, Murri Rita

机构信息

Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.

Department of Statistical Sciences, Università Sapienza, 00161 Rome, Italy.

出版信息

Antibiotics (Basel). 2022 Feb 24;11(3):304. doi: 10.3390/antibiotics11030304.


DOI:10.3390/antibiotics11030304
PMID:35326768
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8944459/
Abstract

Machine learning and cluster analysis applied to the clinical setting of an intensive care unit can be a valuable aid for clinical management, especially with the increasing complexity of clinical monitoring. Providing a method to measure clinical experience, a proxy for that automatic evaluation that an experienced clinician sometimes effortlessly, but often only after long, hard consideration and consultation with colleagues, relies upon for decision making, is what we wanted to achieve with the application of machine learning to antibiotic therapy and clinical monitoring in the present work. This is a single-center retrospective analysis proposing methods for evaluation of vitals and antimicrobial therapy in intensive care patients. For each patient included in the present study, duration of antibiotic therapy, consecutive days of treatment and type and combination of antimicrobial agents have been assessed and considered as single unique daily record for analysis. Each parameter, composing a record was normalized using a fuzzy logic approach and assigned to five descriptive categories (fuzzy domain sub-sets ranging from "very low" to "very high"). Clustering of these normalized therapy records was performed, and each patient/day was considered to be a pertaining cluster. The same methodology was used for hourly bed-side monitoring. Changes in patient conditions (monitoring) can lead to a shift of clusters. This can provide an additional tool for assessing progress of complex patients. We used Fuzzy logic normalization to descriptive categories of parameters as a form nearer to human language than raw numbers.

摘要

将机器学习和聚类分析应用于重症监护病房的临床环境中,对于临床管理可能是一项有价值的辅助手段,尤其是在临床监测日益复杂的情况下。提供一种衡量临床经验的方法,这是经验丰富的临床医生有时能轻松做出,但往往是在经过长时间的认真思考并与同事协商后才能做出的自动评估的替代方法,这就是我们在当前工作中将机器学习应用于抗生素治疗和临床监测想要实现的目标。这是一项单中心回顾性分析,提出了评估重症监护患者生命体征和抗菌治疗的方法。对于本研究纳入的每一位患者,抗生素治疗的持续时间、连续治疗天数以及抗菌药物的类型和组合都已进行评估,并被视为用于分析的单一独特每日记录。构成一条记录的每个参数都使用模糊逻辑方法进行归一化处理,并被分配到五个描述性类别(模糊域子集,范围从“非常低”到“非常高”)。对这些归一化的治疗记录进行聚类,每位患者/每天都被视为一个相关聚类。对每小时的床边监测采用相同的方法。患者病情的变化(监测)可能导致聚类的转变。这可以为评估复杂患者的病情进展提供一个额外的工具。我们使用模糊逻辑将参数描述类别进行归一化处理,使其形式比原始数字更接近人类语言。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c7d/8944459/2a36168a852b/antibiotics-11-00304-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c7d/8944459/cd2820de4ac8/antibiotics-11-00304-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c7d/8944459/b53628f09004/antibiotics-11-00304-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c7d/8944459/2a36168a852b/antibiotics-11-00304-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c7d/8944459/cd2820de4ac8/antibiotics-11-00304-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c7d/8944459/b53628f09004/antibiotics-11-00304-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c7d/8944459/2a36168a852b/antibiotics-11-00304-g003.jpg

相似文献

[1]
Machine Learning and Antibiotic Management.

Antibiotics (Basel). 2022-2-24

[2]
Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier.

J Biomed Inform. 2018-2-19

[3]
Advances In Infection Surveillance and Clinical Decision Support With Fuzzy Sets and Fuzzy Logic.

Stud Health Technol Inform. 2015

[4]
Development of a Machine Learning Model Using Electronic Health Record Data to Identify Antibiotic Use Among Hospitalized Patients.

JAMA Netw Open. 2021-3-1

[5]
Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware.

Med Hypotheses. 2020-3

[6]
An Efficient Segmentation and Classification System in Medical Images Using Intuitionist Possibilistic Fuzzy C-Mean Clustering and Fuzzy SVM Algorithm.

Sensors (Basel). 2020-7-13

[7]
Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.

Environ Pollut. 2018-6-23

[8]
Improved monitoring of preterm infants by Fuzzy Logic.

Technol Health Care. 1996-8

[9]
Tremor assessment using smartphone sensor data and fuzzy reasoning.

BMC Bioinformatics. 2021-4-26

[10]
Design of double fuzzy clustering-driven context neural networks.

Neural Netw. 2018-4-9

引用本文的文献

[1]
Predicting over-the-counter antibiotic use in rural Pune, India, using machine learning methods.

Epidemiol Health. 2024

[2]
Chinese experts' consensus on the application of intensive care big data.

Front Med (Lausanne). 2024-1-8

[3]
Decisions regarding antibiotic prescribing for acute sinusitis in Norwegian general practice. A qualitative focus group study.

Scand J Prim Health Care. 2023-12

本文引用的文献

[1]
Machine Learning, Clinical Notes and Knowledge Graphs for Early Prediction of Acute Kidney Injury in the Intensive Care.

Stud Health Technol Inform. 2022-1-14

[2]
Application of Machine Learning to Predict Acute Kidney Disease in Patients With Sepsis Associated Acute Kidney Injury.

Front Med (Lausanne). 2021-12-10

[3]
Translating the Machine: Skills that Human Clinicians Must Develop in the Era of Artificial Intelligence.

Ophthalmol Ther. 2022-2

[4]
Early prediction of hemodynamic interventions in the intensive care unit using machine learning.

Crit Care. 2021-11-14

[5]
Performance of a machine-learning algorithm to predict hypotension in mechanically ventilated patients with COVID-19 admitted to the intensive care unit: a cohort study.

J Clin Monit Comput. 2022-10

[6]
Advances in artificial intelligence and deep learning systems in ICU-related acute kidney injury.

Curr Opin Crit Care. 2021-12-1

[7]
A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients.

Front Public Health. 2021

[8]
How to Develop and Implement a Computerized Decision Support System Integrated for Antimicrobial Stewardship? Experiences From Two Swiss Hospital Systems.

Front Digit Health. 2021-2-16

[9]
Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021.

Intensive Care Med. 2021-11

[10]
Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology.

Can J Cardiol. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索