Maviglia Riccardo, Michi Teresa, Passaro Davide, Raggi Valeria, Bocci Maria Grazia, Piervincenzi Edoardo, Mercurio Giovanna, Lucente Monica, Murri Rita
Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.
Department of Statistical Sciences, Università Sapienza, 00161 Rome, Italy.
Antibiotics (Basel). 2022 Feb 24;11(3):304. doi: 10.3390/antibiotics11030304.
Machine learning and cluster analysis applied to the clinical setting of an intensive care unit can be a valuable aid for clinical management, especially with the increasing complexity of clinical monitoring. Providing a method to measure clinical experience, a proxy for that automatic evaluation that an experienced clinician sometimes effortlessly, but often only after long, hard consideration and consultation with colleagues, relies upon for decision making, is what we wanted to achieve with the application of machine learning to antibiotic therapy and clinical monitoring in the present work. This is a single-center retrospective analysis proposing methods for evaluation of vitals and antimicrobial therapy in intensive care patients. For each patient included in the present study, duration of antibiotic therapy, consecutive days of treatment and type and combination of antimicrobial agents have been assessed and considered as single unique daily record for analysis. Each parameter, composing a record was normalized using a fuzzy logic approach and assigned to five descriptive categories (fuzzy domain sub-sets ranging from "very low" to "very high"). Clustering of these normalized therapy records was performed, and each patient/day was considered to be a pertaining cluster. The same methodology was used for hourly bed-side monitoring. Changes in patient conditions (monitoring) can lead to a shift of clusters. This can provide an additional tool for assessing progress of complex patients. We used Fuzzy logic normalization to descriptive categories of parameters as a form nearer to human language than raw numbers.
将机器学习和聚类分析应用于重症监护病房的临床环境中,对于临床管理可能是一项有价值的辅助手段,尤其是在临床监测日益复杂的情况下。提供一种衡量临床经验的方法,这是经验丰富的临床医生有时能轻松做出,但往往是在经过长时间的认真思考并与同事协商后才能做出的自动评估的替代方法,这就是我们在当前工作中将机器学习应用于抗生素治疗和临床监测想要实现的目标。这是一项单中心回顾性分析,提出了评估重症监护患者生命体征和抗菌治疗的方法。对于本研究纳入的每一位患者,抗生素治疗的持续时间、连续治疗天数以及抗菌药物的类型和组合都已进行评估,并被视为用于分析的单一独特每日记录。构成一条记录的每个参数都使用模糊逻辑方法进行归一化处理,并被分配到五个描述性类别(模糊域子集,范围从“非常低”到“非常高”)。对这些归一化的治疗记录进行聚类,每位患者/每天都被视为一个相关聚类。对每小时的床边监测采用相同的方法。患者病情的变化(监测)可能导致聚类的转变。这可以为评估复杂患者的病情进展提供一个额外的工具。我们使用模糊逻辑将参数描述类别进行归一化处理,使其形式比原始数字更接近人类语言。
Antibiotics (Basel). 2022-2-24
J Biomed Inform. 2018-2-19
Stud Health Technol Inform. 2015
Technol Health Care. 1996-8
BMC Bioinformatics. 2021-4-26
Neural Netw. 2018-4-9
Front Med (Lausanne). 2024-1-8
Scand J Prim Health Care. 2023-12
Stud Health Technol Inform. 2022-1-14
Front Med (Lausanne). 2021-12-10
Curr Opin Crit Care. 2021-12-1
Front Public Health. 2021
Intensive Care Med. 2021-11