Suppr超能文献

CS 算法:一种用于 EEG 中高频振荡检测的新方法。

The CS algorithm: A novel method for high frequency oscillation detection in EEG.

机构信息

Mayo Systems Electrophysiology Laboratory, Mayo Clinic, Rochester, MN, USA; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.

Mayo Systems Electrophysiology Laboratory, Mayo Clinic, Rochester, MN, USA.

出版信息

J Neurosci Methods. 2018 Jan 1;293:6-16. doi: 10.1016/j.jneumeth.2017.08.023. Epub 2017 Aug 30.

Abstract

BACKGROUND

High frequency oscillations (HFOs) are emerging as potentially clinically important biomarkers for localizing seizure generating regions in epileptic brain. These events, however, are too frequent, and occur on too small a time scale to be identified quickly or reliably by human reviewers. Many of the deficiencies of the HFO detection algorithms published to date are addressed by the CS algorithm presented here.

NEW METHOD

The algorithm employs novel methods for: 1) normalization; 2) storage of parameters to model human expertise; 3) differentiating highly localized oscillations from filtering phenomena; and 4) defining temporal extents of detected events.

RESULTS

Receiver-operator characteristic curves demonstrate very low false positive rates with concomitantly high true positive rates over a large range of detector thresholds. The temporal resolution is shown to be +/-∼5ms for event boundaries. Computational efficiency is sufficient for use in a clinical setting.

COMPARISON WITH EXISTING METHODS

The algorithm performance is directly compared to two established algorithms by Staba (2002) and Gardner (2007). Comparison with all published algorithms is beyond the scope of this work, but the features of all are discussed. All code and example data sets are freely available.

CONCLUSIONS

The algorithm is shown to have high sensitivity and specificity for HFOs, be robust to common forms of artifact in EEG, and have performance adequate for use in a clinical setting.

摘要

背景

高频振荡(HFOs)正在成为定位癫痫脑内致痫区的潜在临床重要生物标志物。然而,这些事件过于频繁,发生的时间尺度太小,人类审阅者很难快速或可靠地识别。这里提出的 CS 算法解决了迄今为止发表的许多 HFO 检测算法的缺陷。

新方法

该算法采用了新的方法:1)归一化;2)存储参数以模拟人类专业知识;3)区分高度局部化的振荡与滤波现象;4)定义检测到的事件的时间范围。

结果

接收者操作特征曲线表明,在检测器阈值的较大范围内,假阳性率非常低,而真阳性率很高。检测到的事件边界的时间分辨率为正负约 5ms。计算效率足以用于临床环境。

与现有方法的比较

通过 Staba(2002 年)和 Gardner(2007 年)的两个既定算法,直接比较算法性能。本研究并未直接比较所有已发表算法的性能,但讨论了所有算法的特点。所有代码和示例数据集均可免费获得。

结论

该算法对 HFO 具有高灵敏度和特异性,对 EEG 中的常见伪影具有鲁棒性,性能足以用于临床环境。

相似文献

10
Temporal changes of neocortical high-frequency oscillations in epilepsy.癫痫患者新皮层高频振荡的时间变化。
J Neurophysiol. 2013 Sep;110(5):1167-79. doi: 10.1152/jn.01009.2012. Epub 2013 Jun 12.

引用本文的文献

本文引用的文献

3
Automatic detection of fast ripples.自动检测快波涟漪。
J Neurosci Methods. 2013 Mar 15;213(2):236-49. doi: 10.1016/j.jneumeth.2012.12.013. Epub 2012 Dec 21.
5
Awake hippocampal sharp-wave ripples support spatial memory.清醒状态下海马体尖锐波涟漪支持空间记忆。
Science. 2012 Jun 15;336(6087):1454-8. doi: 10.1126/science.1217230. Epub 2012 May 3.
6
High frequency oscillations in the intact brain.完整大脑中的高频振荡。
Prog Neurobiol. 2012 Sep;98(3):241-9. doi: 10.1016/j.pneurobio.2012.02.004. Epub 2012 Mar 17.
8
A comparison between detectors of high frequency oscillations.高频振荡探测器比较。
Clin Neurophysiol. 2012 Jan;123(1):106-16. doi: 10.1016/j.clinph.2011.06.006. Epub 2011 Jul 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验