Physics Department, Korea University, Seoul, 136-701, Republic of Korea.
Physics Department, University of Notre Dame, Notre Dame, IN, 46556, USA.
Sci Rep. 2017 Aug 31;7(1):10162. doi: 10.1038/s41598-017-10621-6.
We investigate the process of selectively manipulating the magnetization alignment in magnetic layers in the Fe/GaAs/GaMnAs structure by current-induced spin-orbit (SO) magnetic field. The presence of such fields manifests itself through the hysteretic behavior of planar Hall resistance observed for two opposite currents as the magnetization in the structure switches directions. In the case of the Fe/GaAs/GaMnAs multilayer, hystereses are clearly observed when the magnetization switches direction in the GaMnAs layer, but are negligible when magnetization transitions occur in Fe. This difference in the effect of the SO-field in the two magnetic layers provides an opportunity to control the magnetization in one layer (in the presence case in GaMnAs) by a current, while the magnetization in the other layer (i.e., Fe) remains fixed. Owing to our ability to selectively control the magnetization in the GaMnAs layer, we are able to manipulate the relative spin configurations in our structure between collinear and non-collinear alignments simply by switching the current direction even in the absence of an external magnetic field.
我们研究了通过电流诱导的自旋轨道(SO)磁场在 Fe/GaAs/GaMnAs 结构中选择性操纵磁层中磁化排列的过程。通过观察对于两个相反电流的平面霍尔电阻的滞后行为可以发现这种场的存在,因为结构中的磁化方向发生了变化。在 Fe/GaAs/GaMnAs 多层结构的情况下,当 GaMnAs 层中的磁化方向发生变化时,明显观察到滞后现象,但当 Fe 中发生磁化转变时,滞后现象可以忽略不计。SO 场在两个磁性层中的这种不同作用提供了一种机会,可以通过电流控制一个层(在 GaMnAs 中存在的情况下)中的磁化,而另一个层(即 Fe)中的磁化保持固定。由于我们能够选择性地控制 GaMnAs 层中的磁化,我们能够通过简单地切换电流方向来操纵我们结构中的相对自旋配置,即使在没有外磁场的情况下,也可以在共线和非共线排列之间进行切换。