Suppr超能文献

无场切换垂直磁化通过反铁磁体/铁磁体/氧化物结构中的自旋轨道扭矩实现。

Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures.

机构信息

Department of Materials Science and Engineering and KI for Nanocentury, KAIST, Daejeon 34141, Korea.

School of Electrical Engineering, KAIST, Daejeon 34141, Korea.

出版信息

Nat Nanotechnol. 2016 Oct;11(10):878-884. doi: 10.1038/nnano.2016.109. Epub 2016 Jul 11.

Abstract

Spin-orbit torques arising from the spin-orbit coupling of non-magnetic heavy metals allow electrical switching of perpendicular magnetization. However, the switching is not purely electrical in laterally homogeneous structures. An extra in-plane magnetic field is indeed required to achieve deterministic switching, and this is detrimental for device applications. On the other hand, if antiferromagnets can generate spin-orbit torques, they may enable all-electrical deterministic switching because the desired magnetic field may be replaced by their exchange bias. Here we report sizeable spin-orbit torques in IrMn/CoFeB/MgO structures. The antiferromagnetic IrMn layer also supplies an in-plane exchange bias field, which enables all-electrical deterministic switching of perpendicular magnetization without any assistance from an external magnetic field. Together with sizeable spin-orbit torques, these features make antiferromagnets a promising candidate for future spintronic devices. We also show that the signs of the spin-orbit torques in various IrMn-based structures cannot be explained by existing theories and thus significant theoretical progress is required.

摘要

非磁性重金属的自旋轨道耦合会产生自旋轨道扭矩,从而实现垂直磁化的电切换。然而,在各向同性的横向结构中,这种切换并非完全是电驱动的。实际上,需要外加一个面内磁场才能实现确定性切换,这对于器件应用是不利的。另一方面,如果反铁磁体能够产生自旋轨道扭矩,它们可能实现全电确定性切换,因为所需的磁场可以被它们的交换偏置所取代。在这里,我们报告了 IrMn/CoFeB/MgO 结构中可观的自旋轨道扭矩。反铁磁 IrMn 层还提供了一个面内的交换偏置场,这使得无需外部磁场的辅助,就能实现垂直磁化的全电确定性切换。除了可观的自旋轨道扭矩外,这些特性使得反铁磁体成为未来自旋电子器件的一个很有前途的候选材料。我们还表明,现有理论无法解释各种基于 IrMn 的结构中的自旋轨道扭矩的符号,因此需要取得显著的理论进展。

相似文献

9
Field-Free Spin-Orbit Torque Switching from Geometrical Domain-Wall Pinning.无场几何畴壁钉扎中的自旋轨道转矩开关。
Nano Lett. 2018 Aug 8;18(8):4669-4674. doi: 10.1021/acs.nanolett.8b00773. Epub 2018 Jul 3.
10
Observation of Thermal Spin-Orbit Torque in W/CoFeB/MgO Structures.W/CoFeB/MgO结构中热自旋轨道转矩的观测
Nano Lett. 2020 Nov 11;20(11):7803-7810. doi: 10.1021/acs.nanolett.0c01702. Epub 2020 Oct 15.

引用本文的文献

2
Magnetization switching by asymmetric topological surfaces.非对称拓扑表面的磁化翻转
Natl Sci Rev. 2025 May 9;12(7):nwaf178. doi: 10.1093/nsr/nwaf178. eCollection 2025 Jul.

本文引用的文献

3
Spin-orbit-torque engineering via oxygen manipulation.通过氧操控实现自旋轨道转矩工程
Nat Nanotechnol. 2015 Apr;10(4):333-8. doi: 10.1038/nnano.2015.18. Epub 2015 Mar 2.
4
Spin Hall effects in metallic antiferromagnets.自旋霍尔效应在金属反铁磁体中的应用。
Phys Rev Lett. 2014 Nov 7;113(19):196602. doi: 10.1103/PhysRevLett.113.196602. Epub 2014 Nov 4.
5
Relativistic Néel-order fields induced by electrical current in antiferromagnets.反铁磁体中电流诱导的相对论性奈尔序场。
Phys Rev Lett. 2014 Oct 10;113(15):157201. doi: 10.1103/PhysRevLett.113.157201. Epub 2014 Oct 6.
7
An antidamping spin-orbit torque originating from the Berry curvature.源自 Berry 曲率的反阻尼自旋轨道扭矩。
Nat Nanotechnol. 2014 Mar;9(3):211-7. doi: 10.1038/nnano.2014.15. Epub 2014 Mar 2.
8
Anomalous Hall effect arising from noncollinear antiferromagnetism.反常霍尔效应源于非共线反铁磁性。
Phys Rev Lett. 2014 Jan 10;112(1):017205. doi: 10.1103/PhysRevLett.112.017205.
9
Room-temperature antiferromagnetic memory resistor.室温反铁磁记忆电阻器。
Nat Mater. 2014 Apr;13(4):367-74. doi: 10.1038/nmat3861. Epub 2014 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验