Suppr超能文献

机器学习能否补充传统的医疗设备监测?双腔植入式心脏复律除颤器的案例研究。

Can machine learning complement traditional medical device surveillance? A case study of dual-chamber implantable cardioverter-defibrillators.

作者信息

Ross Joseph S, Bates Jonathan, Parzynski Craig S, Akar Joseph G, Curtis Jeptha P, Desai Nihar R, Freeman James V, Gamble Ginger M, Kuntz Richard, Li Shu-Xia, Marinac-Dabic Danica, Masoudi Frederick A, Normand Sharon-Lise T, Ranasinghe Isuru, Shaw Richard E, Krumholz Harlan M

机构信息

Section of General Medicine, Department of Medicine.

Robert Wood Johnson Foundation Clinical Scholars Program, Yale School of Medicine.

出版信息

Med Devices (Auckl). 2017 Aug 16;10:165-188. doi: 10.2147/MDER.S138158. eCollection 2017.

Abstract

BACKGROUND

Machine learning methods may complement traditional analytic methods for medical device surveillance.

METHODS AND RESULTS

Using data from the National Cardiovascular Data Registry for implantable cardioverter-defibrillators (ICDs) linked to Medicare administrative claims for longitudinal follow-up, we applied three statistical approaches to safety-signal detection for commonly used dual-chamber ICDs that used two propensity score (PS) models: one specified by subject-matter experts (PS-SME), and the other one by machine learning-based selection (PS-ML). The first approach used PS-SME and cumulative incidence (time-to-event), the second approach used PS-SME and cumulative risk (Data Extraction and Longitudinal Trend Analysis [DELTA]), and the third approach used PS-ML and cumulative risk (embedded feature selection). Safety-signal surveillance was conducted for eleven dual-chamber ICD models implanted at least 2,000 times over 3 years. Between 2006 and 2010, there were 71,948 Medicare fee-for-service beneficiaries who received dual-chamber ICDs. Cumulative device-specific unadjusted 3-year event rates varied for three surveyed safety signals: death from any cause, 12.8%-20.9%; nonfatal ICD-related adverse events, 19.3%-26.3%; and death from any cause or nonfatal ICD-related adverse event, 27.1%-37.6%. Agreement among safety signals detected/not detected between the time-to-event and DELTA approaches was 90.9% (360 of 396, =0.068), between the time-to-event and embedded feature-selection approaches was 91.7% (363 of 396, =-0.028), and between the DELTA and embedded feature selection approaches was 88.1% (349 of 396, =-0.042).

CONCLUSION

Three statistical approaches, including one machine learning method, identified important safety signals, but without exact agreement. Ensemble methods may be needed to detect all safety signals for further evaluation during medical device surveillance.

摘要

背景

机器学习方法可补充用于医疗设备监测的传统分析方法。

方法与结果

利用来自国家心血管数据注册库中与医疗保险行政索赔相链接的植入式心脏复律除颤器(ICD)数据进行纵向随访,我们应用三种统计方法对常用双腔ICD进行安全信号检测,这些双腔ICD使用了两种倾向评分(PS)模型:一种由主题专家指定(PS-SME),另一种基于机器学习选择(PS-ML)。第一种方法使用PS-SME和累积发病率(事件发生时间),第二种方法使用PS-SME和累积风险(数据提取与纵向趋势分析[DELTA]),第三种方法使用PS-ML和累积风险(嵌入式特征选择)。对3年内植入至少2000次的11种双腔ICD模型进行安全信号监测。在2006年至2010年期间,有71948名医疗保险按服务收费受益人接受了双腔ICD。三种调查的安全信号的特定设备累积未调整3年事件发生率各不相同:任何原因导致的死亡,12.8%-20.9%;非致命性ICD相关不良事件,19.3%-26.3%;任何原因导致的死亡或非致命性ICD相关不良事件,27.1%-37.6%。事件发生时间法和DELTA法之间检测到/未检测到的安全信号之间的一致性为90.9%(396个中的360个,P = 0.068),事件发生时间法和嵌入式特征选择法之间为91.7%(396个中的363个,P = -0.028),DELTA法和嵌入式特征选择法之间为88.1%(396个中的349个,P = -0.042)。

结论

三种统计方法,包括一种机器学习方法,识别出了重要的安全信号,但没有完全一致的结果。可能需要集成方法来检测所有安全信号,以便在医疗设备监测期间进行进一步评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc73/5566316/a98c7ec13c1b/mder-10-165Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验