Suppr超能文献

RAS 数据集:用于右心房分割的 3D 心脏 LGE-MRI 数据集。

RAS Dataset: A 3D Cardiac LGE-MRI Dataset for Segmentation of Right Atrial Cavity.

机构信息

Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China.

Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand.

出版信息

Sci Data. 2024 Apr 20;11(1):401. doi: 10.1038/s41597-024-03253-9.

Abstract

The current challenge in effectively treating atrial fibrillation (AF) stems from a limited understanding of the intricate structure of the human atria. The objective and quantitative interpretation of the right atrium (RA) in late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) scans relies heavily on its precise segmentation. Leveraging the potential of artificial intelligence (AI) for RA segmentation presents a promising solution. However, the successful implementation of AI in this context necessitates access to a substantial volume of annotated LGE-MRI images for model training. In this paper, we present a comprehensive 3D cardiac dataset comprising 50 high-resolution LGE-MRI scans, each meticulously annotated at the pixel level. The annotation process underwent rigorous standardization through crowdsourcing among a panel of medical experts, ensuring the accuracy and consistency of the annotations. Our dataset represents a significant contribution to the field, providing a valuable resource for advancing RA segmentation methods.

摘要

目前,有效治疗心房颤动 (AF) 的挑战源于对人类心房复杂结构的理解有限。在钆增强磁共振成像 (LGE-MRI) 扫描的晚期,右心房 (RA) 的客观和定量解释在很大程度上依赖于其精确的分割。利用人工智能 (AI) 对 RA 进行分割是一种很有前途的解决方案。然而,要想在这方面成功实施人工智能,就需要获得大量经过注释的 LGE-MRI 图像来进行模型训练。在本文中,我们提出了一个全面的 3D 心脏数据集,包含 50 个高分辨率的 LGE-MRI 扫描,每个扫描都在像素级别进行了精心注释。注释过程通过医疗专家小组的众包进行了严格的标准化,以确保注释的准确性和一致性。我们的数据集为该领域做出了重要贡献,为推进 RA 分割方法提供了有价值的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10d/11032400/387ceec63f17/41597_2024_3253_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验