Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China.
Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand.
Sci Data. 2024 Apr 20;11(1):401. doi: 10.1038/s41597-024-03253-9.
The current challenge in effectively treating atrial fibrillation (AF) stems from a limited understanding of the intricate structure of the human atria. The objective and quantitative interpretation of the right atrium (RA) in late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) scans relies heavily on its precise segmentation. Leveraging the potential of artificial intelligence (AI) for RA segmentation presents a promising solution. However, the successful implementation of AI in this context necessitates access to a substantial volume of annotated LGE-MRI images for model training. In this paper, we present a comprehensive 3D cardiac dataset comprising 50 high-resolution LGE-MRI scans, each meticulously annotated at the pixel level. The annotation process underwent rigorous standardization through crowdsourcing among a panel of medical experts, ensuring the accuracy and consistency of the annotations. Our dataset represents a significant contribution to the field, providing a valuable resource for advancing RA segmentation methods.
目前,有效治疗心房颤动 (AF) 的挑战源于对人类心房复杂结构的理解有限。在钆增强磁共振成像 (LGE-MRI) 扫描的晚期,右心房 (RA) 的客观和定量解释在很大程度上依赖于其精确的分割。利用人工智能 (AI) 对 RA 进行分割是一种很有前途的解决方案。然而,要想在这方面成功实施人工智能,就需要获得大量经过注释的 LGE-MRI 图像来进行模型训练。在本文中,我们提出了一个全面的 3D 心脏数据集,包含 50 个高分辨率的 LGE-MRI 扫描,每个扫描都在像素级别进行了精心注释。注释过程通过医疗专家小组的众包进行了严格的标准化,以确保注释的准确性和一致性。我们的数据集为该领域做出了重要贡献,为推进 RA 分割方法提供了有价值的资源。