School of Physics, State Key Lab for Mesoscopic Physics; Academy for Advanced Interdisciplinary Studies; Collaborative Innovation Center of Quantum Matter, Peking University , Beijing 100871, China.
Center for Programmable Materials, School of Electrical and Electronic Engineering, Nanyang Technology University , Singapore 639798.
ACS Nano. 2017 Oct 24;11(10):9720-9727. doi: 10.1021/acsnano.7b05479. Epub 2017 Sep 7.
The manipulation of light in an integrated circuit is crucial for the development of high-speed electro-optic devices. Recently, molybdenum disulfide (MoS) monolayers generated broad interest for the optoelectronics because of their huge exciton binding energy, tunable optical emission, direct electronic band-gap structure, etc. Miniaturization and multifunctionality of electro-optic devices further require the manipulation of light-matter interaction at the single-nanoparticle level. The strong exciton-plasmon interaction that is generated between the MoS monolayers and metallic nanostructures may be a possible solution for compact electro-optic devices at the nanoscale. Here, we demonstrate a nanoplasmonic modulator in the visible spectral region by combining the MoS monolayers with a single Au nanodisk. The narrow MoS excitons coupled with broad Au plasmons result in a deep Fano resonance, which can be switched on and off by applying different gate voltages on the MoS monolayers. A reversible display device that is based on this single-nanoparticle modulator is demonstrated with a heptamer pattern that is actively controlled by the external gates. Our work provides a potential application for electro-optic modulation on the nanoscale and promotes the development of gate-tunable nanoplasmonic devices in the future.
在集成电路中对光的操控对于高速电光器件的发展至关重要。最近,由于二硫化钼(MoS)单层具有巨大的激子束缚能、可调谐的光学发射、直接的能带隙结构等特性,因此在光电领域引起了广泛的关注。电光器件的小型化和多功能化进一步要求在单纳米颗粒水平上操控光物质相互作用。MoS 单层与金属纳米结构之间产生的强激子等离子体相互作用可能是实现纳米尺度上紧凑电光器件的一种可行方案。在这里,我们通过将 MoS 单层与单个 Au 纳米盘结合,在可见光谱区域展示了一种纳米等离子体调制器。窄的 MoS 激子与宽的 Au 等离子体耦合产生了深的 Fano 共振,通过在 MoS 单层上施加不同的栅极电压可以实现共振的开启和关闭。我们通过外部栅极主动控制的七聚体图案展示了基于这种单纳米颗粒调制器的可逆显示器件。我们的工作为纳米尺度上的电光调制提供了一种潜在的应用,并推动了未来栅可调谐纳米等离子体器件的发展。