Han Chunrui, Wang Yu, Zhou Weihu, Liang Minpeng, Ye Jianting
Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
Sci Rep. 2021 May 12;11(1):10080. doi: 10.1038/s41598-021-89136-0.
Layered transition metal dichalcogenides (TMDCs) have shown great potential for a wide range of applications in photonics and optoelectronics. Nevertheless, valley decoherence severely randomizes its polarization which is important to a light emitter. Plasmonic metasurface with a unique way to manipulate the light-matter interaction may provide an effective and practical solution. Here by integrating TMDCs with plasmonic nanowire arrays, we demonstrate strong anisotropic enhancement of the excitonic emission at different spectral positions. For the indirect bandgap transition in bilayer WS, multifold enhancement can be achieved with the photoluminescence (PL) polarization either perpendicular or parallel to the long axis of nanowires, which arises from the coupling of WS with localized or guided plasmon modes, respectively. Moreover, PL of high linearity is obtained in the direct bandgap transition benefiting from, in addition to the plasmonic enhancement, the directional diffraction scattering of nanowire arrays. Our method with enhanced PL intensity contrasts to the conventional form-birefringence based on the aspect ratio of nanowire arrays where the intensity loss is remarkable. Our results provide a prototypical plasmon-exciton hybrid system for anisotropic enhancement of the PL at the nanoscale, enabling simultaneous control of the intensity, polarization and wavelength toward practical ultrathin photonic devices based on TMDCs.
层状过渡金属二硫属化物(TMDCs)在光子学和光电子学的广泛应用中显示出巨大潜力。然而,谷去相干严重地使其极化随机化,而极化对于发光体很重要。具有独特方式来操纵光与物质相互作用的等离子体超表面可能提供一种有效且实用的解决方案。在这里,通过将TMDCs与等离子体纳米线阵列集成,我们展示了在不同光谱位置激子发射的强烈各向异性增强。对于双层WS中的间接带隙跃迁,当光致发光(PL)极化垂直或平行于纳米线的长轴时,分别由于WS与局域或导模等离子体模式的耦合,可以实现多重增强。此外,除了等离子体增强外,受益于纳米线阵列的定向衍射散射,在直接带隙跃迁中获得了高线性度的PL。与基于纳米线阵列纵横比的传统形式双折射相比,我们的方法具有增强的PL强度,而传统方法中强度损失显著。我们的结果提供了一个用于在纳米尺度上各向异性增强PL的典型等离子体 - 激子混合系统,能够朝着基于TMDCs的实用超薄光子器件同时控制强度、极化和波长。