Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA.
Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA.
Macromol Biosci. 2018 Jan;18(1). doi: 10.1002/mabi.201700192. Epub 2017 Sep 4.
Recombinant silk-elastinlike protein polymers (SELPs) combine the biocompatibility and thermoresponsiveness of human tropoelastin with the strength of silk. Direct control over structure of these monodisperse polymers allows for precise correlation of structure with function. This work describes the fabrication of the first SELP nanogels and evaluation of their physicochemical properties and thermoresponsiveness. Self-assembly of dilute concentrations of SELPs results in nanogels with enhanced stability over micelles due to physically crosslinked beta-sheet silk segments. The nanogels respond to thermal stimuli via size changes and aggregation. Modifying the ratio and sequence of silk to elastin in the polymer backbone results in alterations in critical gel formation concentration, stability, aggregation, size contraction temperature, and thermal reversibility. The nanogels sequester hydrophobic compounds and show promise in delivery of bioactive agents.
重组丝弹性蛋白样蛋白聚合物(SELPs)结合了人原弹性蛋白的生物相容性和温度响应性以及丝的强度。对这些单分散聚合物结构的直接控制允许精确地将结构与功能相关联。本工作描述了第一个 SELP 纳米凝胶的制备及其理化性质和温度响应性的评价。稀浓度 SELP 的自组装导致纳米凝胶由于物理交联的β-折叠丝段而比胶束具有增强的稳定性。纳米凝胶通过尺寸变化和聚集对热刺激做出响应。改变聚合物主链中丝和弹性蛋白的比例和序列会导致临界凝胶形成浓度、稳定性、聚集、尺寸收缩温度和热可逆性的改变。纳米凝胶可以隔离疏水性化合物,并在生物活性剂的递送上有很大的应用前景。