Sauge-Merle Sandrine, Brulfert Florian, Pardoux Romain, Solari Pier Lorenzo, Lemaire David, Safi Samir, Guilbaud Philippe, Simoni Eric, Merroun Mohamed Larbi, Berthomieu Catherine
CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, 13108, Saint-Paul-lez-Durance, France.
Institut de Physique Nucléaire d'Orsay, CNRS-IN2P3, Univ. Paris-Sud, Univ. Paris-Saclay, 91405, Orsay, France.
Chemistry. 2017 Nov 2;23(61):15505-15517. doi: 10.1002/chem.201703484. Epub 2017 Oct 10.
Better understanding of uranyl-protein interactions is a prerequisite to predict uranium chemical toxicity in cells. The EF-hand motif of the calmodulin site I is about thousand times more affine for uranyl than for calcium, and threonine phosphorylation increases the uranyl affinity by two orders of magnitude at pH 7. In this study, we confront X-ray absorption spectroscopy with Fourier transform infrared (FTIR) spectroscopy, time-resolved laser-induced fluorescence spectroscopy (TRLFS), and structural models obtained by molecular dynamics simulations to analyze the uranyl coordination in the native and phosphorylated calmodulin site I. For the native site I, extended X-ray absorption fine structure (EXAFS) data evidence a short U-O distance, in addition to distances compatible with mono- and bidentate coordination by carboxylate groups. Further analysis of uranyl speciation by TRLFS and thorough investigation of the fluorescence decay kinetics strongly support the presence of a hydroxide uranyl ligand. For a phosphorylated site I, the EXAFS and FTIR data support a monodentate uranyl coordination by the phosphoryl group and strong interaction with mono- and bidentate carboxylate ligands. This study confirms the important role of a phosphoryl ligand in the stability of uranyl-protein interactions. By evidencing a hydroxide uranyl ligand in calmodulin site I, this study also highlights the possible role of less studied ligands as water or hydroxide ions in the stability of protein-uranyl complexes.
更好地理解铀酰-蛋白质相互作用是预测细胞中铀化学毒性的前提条件。钙调蛋白位点I的EF-手基序对铀酰的亲和力比对钙的亲和力高约一千倍,并且在pH 7时苏氨酸磷酸化使铀酰亲和力增加两个数量级。在本研究中,我们将X射线吸收光谱与傅里叶变换红外(FTIR)光谱、时间分辨激光诱导荧光光谱(TRLFS)以及通过分子动力学模拟获得的结构模型相结合,以分析天然和磷酸化钙调蛋白位点I中的铀酰配位情况。对于天然位点I,扩展X射线吸收精细结构(EXAFS)数据除了显示与羧酸盐基团单齿和双齿配位兼容的距离外,还证明了一个短的U-O距离。通过TRLFS对铀酰形态的进一步分析以及对荧光衰减动力学的深入研究有力地支持了氢氧铀酰配体的存在。对于磷酸化位点I,EXAFS和FTIR数据支持磷酰基团的单齿铀酰配位以及与单齿和双齿羧酸盐配体的强相互作用。本研究证实了磷酰配体在铀酰-蛋白质相互作用稳定性中的重要作用。通过证明钙调蛋白位点I中存在氢氧铀酰配体,本研究还强调了较少研究的配体如水或氢氧根离子在蛋白质-铀酰配合物稳定性中的可能作用。