CEA, DSV IBEB, Laboratoire des Interactions Protéine-Métal, Saint-Paul-lez-Durance, France.
PLoS One. 2012;7(8):e41922. doi: 10.1371/journal.pone.0041922. Epub 2012 Aug 3.
To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9)TKE(12) sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d) = 25±6 nM to K(d) = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d) = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as)(P-O) and ν(s)(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as)(UO(2))(2+) vibration (from 923 cm(-1) to 908 cm(-1)) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.
为了提高我们对铀毒性的认识,必须更好地描述蛋白质中铀亲和力的决定因素。在这项工作中,我们使用钙调蛋白的第 1 个 EF 手模体分析了蛋白质结合位点中磷酸基团对铀结合亲和力的贡献。来自拟南芥的钙调蛋白的重组结构域 1 被设计用来破坏第 2 位的金属结合,并被用作结构模板。在体外,使用重组蛋白激酶 CK2 的催化亚基,对位于环的第 9 位的苏氨酸进行磷酸化。因此,T(9)TKE(12)序列被 CK2 识别序列 TAAE 取代。在第 7 位引入一个酪氨酸,以便通过跟踪酪氨酸荧光来确定铀酰和钙的结合亲和力。通过 ESI-MS 光谱法对磷酸化进行了表征,并使用离子交换色谱法将磷酸化肽纯化为均相。通过与亚氨基二乙酸的竞争实验确定了铀酰的结合常数。在 pH 6 时,磷酸化将铀酰的亲和力提高了约 5 倍,从 K(d) = 25±6 nM 提高到 K(d) = 5±1 nM。在 pH 7 时,磷酸化肽表现出更大的亲和力,解离常数在纳摩尔范围内(K(d) = 0.25±0.06 nM)。FTIR 分析表明,在 pH 6 时,磷酸化苏氨酸的侧链部分质子化,而在 pH 7 时完全去质子化。此外,在 pH 7 时形成铀酰-肽复合物导致磷酸化苏氨酸的 ν(as)(P-O)和 ν(s)(P-O)IR 模式的显著频率位移,支持其与铀酰的直接相互作用。因此,在铀酰配位到磷酸化肽时,观察到 ν(as)(UO(2))(2+)振动的红移(从 923 cm(-1)到 908 cm(-1))。总之,我们的数据表明,在生理 pH 下,磷酸基团在蛋白质中铀亲和力中起着决定性的作用。