Suppr超能文献

评估无配对正常样本的体细胞肿瘤突变检测。

Evaluating somatic tumor mutation detection without matched normal samples.

机构信息

Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.

Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.

出版信息

Hum Genomics. 2017 Sep 4;11(1):22. doi: 10.1186/s40246-017-0118-2.

Abstract

BACKGROUND

Observations of recurrent somatic mutations in tumors have led to identification and definition of signaling and other pathways that are important for cancer progression and therapeutic targeting. As tumor cells contain both an individual's inherited genetic variants and somatic mutations, challenges arise in distinguishing these events in massively parallel sequencing datasets. Typically, both a tumor sample and a "normal" sample from the same individual are sequenced and compared; variants observed only in the tumor are considered to be somatic mutations. However, this approach requires two samples for each individual.

RESULTS

We evaluate a method of detecting somatic mutations in tumor samples for which only a subset of normal samples are available. We describe tuning of the method for detection of mutations in tumors, filtering to remove inherited variants, and comparison of detected mutations to several matched tumor/normal analysis methods. Filtering steps include the use of population variation datasets to remove inherited variants as well a subset of normal samples to remove technical artifacts. We then directly compare mutation detection with tumor-only and tumor-normal approaches using the same sets of samples. Comparisons are performed using an internal targeted gene sequencing dataset (n = 3380) as well as whole exome sequencing data from The Cancer Genome Atlas project (n = 250). Tumor-only mutation detection shows similar recall (43-60%) but lesser precision (20-21%) to current matched tumor/normal approaches (recall 43-73%, precision 30-82%) when compared to a "gold-standard" tumor/normal approach. The inclusion of a small pool of normal samples improves precision, although many variants are still uniquely detected in the tumor-only analysis.

CONCLUSIONS

A detailed method for somatic mutation detection without matched normal samples enables study of larger numbers of tumor samples, as well as tumor samples for which a matched normal is not available. As sensitivity/recall is similar to tumor/normal mutation detection but precision is lower, tumor-only detection is more appropriate for classification of samples based on known mutations. Although matched tumor-normal analysis is preferred due to higher precision, we demonstrate that mutation detection without matched normal samples is possible for certain applications.

摘要

背景

对肿瘤中反复出现的体细胞突变的观察,导致了对信号和其他对癌症进展和治疗靶向很重要的途径的鉴定和定义。由于肿瘤细胞既包含个体的遗传变异,也包含体细胞突变,因此在大规模平行测序数据集中区分这些事件会带来挑战。通常,对肿瘤的同一个体的肿瘤样本和“正常”样本进行测序和比较;仅在肿瘤中观察到的变体被认为是体细胞突变。然而,这种方法需要对每个个体进行两次采样。

结果

我们评估了一种仅对部分正常样本可用的肿瘤样本中体细胞突变的检测方法。我们描述了该方法用于检测肿瘤中突变的调整、过滤以去除遗传变异以及将检测到的突变与几种匹配的肿瘤/正常分析方法进行比较。过滤步骤包括使用群体变异数据集来去除遗传变异,以及使用部分正常样本来去除技术伪影。然后,我们使用相同的样本集直接比较仅肿瘤和肿瘤-正常方法的突变检测。使用内部靶向基因测序数据集(n=3380)以及癌症基因组图谱项目的全外显子组测序数据(n=250)进行比较。与“金标准”肿瘤-正常方法相比,当与当前匹配的肿瘤/正常方法(召回率 43-73%,精度 30-82%)相比时,仅肿瘤突变检测的召回率(43-60%)相似,但精度(20-21%)较低。当与“金标准”肿瘤-正常方法相比时,包含一小部分正常样本可提高精度,尽管在仅肿瘤分析中仍有许多变体是唯一检测到的。

结论

一种无需匹配正常样本的详细体细胞突变检测方法,可以研究更多的肿瘤样本,以及无法获得匹配正常样本的肿瘤样本。由于敏感性/召回率与肿瘤/正常突变检测相似,但精度较低,因此仅肿瘤检测更适合基于已知突变对样本进行分类。尽管由于精度较高,匹配的肿瘤-正常分析更受青睐,但我们证明,对于某些应用,无需匹配正常样本即可进行突变检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/037d/5584341/15dbeaf6d444/40246_2017_118_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验