Del-Saz Nestor Fernandez, Ribas-Carbo Miquel, Martorell Gabriel, Fernie Alisdair R, Florez-Sarasa Igor
Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain.
Serveis Científico-Tècnics, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain.
Methods Mol Biol. 2017;1670:203-217. doi: 10.1007/978-1-4939-7292-0_17.
Plant respiration is characterized by the existence of the alternative oxidase pathway (AOP) that competes with cytochrome oxidase pathway (COP) for the electrons of the ubiquinone pool of the mitochondrial electron transport chain, thus reducing ATP synthesis. The oxygen (O) isotope fractionation technique is the only available to determine the electron partitioning between the two pathways and their in vivo activities in plant tissues. In this chapter, the basis of the O isotope fractionation technique and its derived calculations are carefully explained together with a detailed description of the dual-inlet isotope ratio mass spectrometry (DI-IRMS) system and the protocol developed at the University of Balearic Islands. The key advantages of the DI-IRMS over other systems are highlighted as well as the potential problems of this technique. Among these problems, those associated with leakage, diffusion, and inhibitor treatments are noted and solutions to prevent, detect, and repair these problems are detailed.
植物呼吸的特点是存在交替氧化酶途径(AOP),该途径与细胞色素氧化酶途径(COP)竞争线粒体电子传递链泛醌池中的电子,从而减少ATP合成。氧(O)同位素分馏技术是唯一可用于确定植物组织中两条途径之间的电子分配及其体内活性的方法。在本章中,将仔细解释O同位素分馏技术的基础及其衍生计算,并详细描述双进样同位素比率质谱(DI-IRMS)系统以及在巴利阿里群岛大学开发的方案。重点介绍了DI-IRMS相对于其他系统的关键优势以及该技术的潜在问题。在这些问题中,指出了与泄漏、扩散和抑制剂处理相关的问题,并详细说明了预防、检测和修复这些问题的解决方案。