Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.
International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University , Shaanxi 710049, P. R. China.
J Am Chem Soc. 2017 Sep 27;139(38):13525-13532. doi: 10.1021/jacs.7b07506. Epub 2017 Sep 13.
High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcoming the limitation of island-forming Volmer-Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (10 cm s), and low defect density of 10 cm, which are comparable to those of CsPbBr single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. The high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.
高质量的金属卤化物钙钛矿单晶具有低缺陷密度和优异的光物理性质,但薄膜是最受追捧的光电设备材料几何形状。钙钛矿单晶薄膜(SCTF)对于高性能器件将是非常理想的,但它们的生长仍然具有挑战性,特别是对于无机金属卤化物钙钛矿。在此,我们报告了在传统氧化物钙钛矿 SrTiO(100) 衬底上,通过简便的气相外延生长具有可控微米厚度的铯铅溴钙钛矿(CsPbBr)连续 SCTF 以及纳米板阵列。两种钙钛矿之间的意外的不完全晶格匹配使得异质单晶生长成为可能,克服成核形成的弗伦克尔-韦伯晶体生长的限制对于生长大面积连续薄膜至关重要。时间分辨光致发光、瞬态反射光谱和输运测量表明,CsPbBr 外延薄膜具有较慢的载流子复合速率、低表面复合速率(10 cm s)和低缺陷密度(10 cm),与 CsPbBr 单晶相当。这项工作提出了一种使用氧化物钙钛矿作为衬底进行卤化物钙钛矿异质外延生长的通用方法。多功能氧化物钙钛矿外延集成的高质量卤化物钙钛矿 SCTF 可能为各种高性能光电设备开辟机会。