Rashid Mamoon Ur, Tahir Zeeshan, Sheeraz Muhammad, Ullah Farman, Park Yun Chang, Maqbool Faisal, Kim Yong Soo
Department of Semiconductor Physics & Engineering and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea.
Department of Mechanical & Mechatronics Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Nanomaterials (Basel). 2024 Jul 25;14(15):1248. doi: 10.3390/nano14151248.
Morphology plays a crucial role in defining the optical, electronic, and mechanical properties of halide perovskite microcrystals. Therefore, developing strategies that offer precise control over crystal morphology during the growth process is highly desirable. This work presents a simple scheme to simultaneously grow distinct geometries of cesium lead bromide (CsPbBr) microcrystals, including microrods (MR), microplates (MP), and microspheres (MS), in a single chemical vapor deposition (CVD) experiment. By strategically adjusting precursor evaporation temperatures, flux density, and the substrate temperature, we surpass previous techniques by achieving simultaneous yet selective growth of multiple CsPbBr geometries at distinct positions on the same substrate. This fine growth control is attributed to the synergistic variation in fluid flow dynamics, precursor substrate distance, and temperature across the substrate, offering regions suitable for the growth of different morphologies. Pertinently, perovskite MR are grown at the top, while MP and MS are observed at the center and bottom regions of the substrate, respectively. Structural analysis reveals high crystallinity and an orthorhombic phase of the as-grown perovskite microcrystals, while persistent photonic lasing manifests their nonlinear optical characteristics, underpinning their potential application for next-generation photonic and optoelectronic devices.
形态学在定义卤化物钙钛矿微晶的光学、电子和机械性能方面起着至关重要的作用。因此,开发在生长过程中能够精确控制晶体形态的策略是非常必要的。这项工作提出了一种简单的方案,在单次化学气相沉积(CVD)实验中同时生长不同几何形状的溴化铯铅(CsPbBr)微晶,包括微棒(MR)、微板(MP)和微球(MS)。通过策略性地调整前驱体蒸发温度、通量密度和衬底温度,我们超越了以往的技术,在同一衬底的不同位置实现了多种CsPbBr几何形状的同时且选择性生长。这种精细的生长控制归因于流体流动动力学、前驱体与衬底距离以及整个衬底温度的协同变化,提供了适合不同形态生长的区域。相关地,钙钛矿微棒生长在顶部,而微板和微球分别出现在衬底的中心和底部区域。结构分析表明,所生长的钙钛矿微晶具有高结晶度和正交相,而持续的光子激光发射体现了它们的非线性光学特性,这为其在下一代光子和光电器件中的潜在应用奠定了基础。