Suppr超能文献

荚膜红细菌铁氧化还原蛋白VI的铁硫复合物中的超快电荷转移动力学

Ultrafast Charge-Transfer Dynamics in the Iron-Sulfur Complex of Rhodobacter capsulatus Ferredoxin VI.

作者信息

Mao Ziliang, Carroll Elizabeth C, Kim Peter W, Cramer Stephen P, Larsen Delmar S

机构信息

Department of Chemistry, University of California Davis , One Shields Avenue, Davis, California 95616, United States.

出版信息

J Phys Chem Lett. 2017 Sep 21;8(18):4498-4503. doi: 10.1021/acs.jpclett.7b02026. Epub 2017 Sep 7.

Abstract

Iron-sulfur proteins play essential roles in various biological processes. Their electronic structure and vibrational dynamics are key to their rich chemistry but nontrivial to unravel. Here, the first ultrafast transient absorption and impulsive coherent vibrational spectroscopic (ICVS) studies on 2Fe-2S clusters in Rhodobacter capsulatus ferreodoxin VI are characterized. Photoexcitation initiated populations on multiple excited electronic states that evolve into each other in a long-lived charge-transfer state. This suggests a potential light-induced electron-transfer pathway as well as the possibility of using iron-sulfur proteins as photosensitizers for light-dependent enzymes. A tyrosine chain near the active site suggests potential hole-transfer pathways and affirms this electron-transfer pathway. The ICVS data revealed vibrational bands at 417 and 484 cm, with the latter attributed to an excited-state mode. The temperature dependence of the ICVS modes suggests that the temperature effect on protein structure or conformational heterogeneities needs to be considered during cryogenic temperature studies.

摘要

铁硫蛋白在各种生物过程中发挥着重要作用。它们的电子结构和振动动力学是其丰富化学性质的关键,但难以解析。在此,首次对荚膜红细菌铁氧化还原蛋白VI中的2Fe-2S簇进行了超快瞬态吸收和脉冲相干振动光谱(ICVS)研究。光激发引发了多个激发电子态上的粒子数,这些粒子数在一个长寿命的电荷转移态中相互演化。这表明了一种潜在的光诱导电子转移途径,以及将铁硫蛋白用作光依赖酶的光敏剂的可能性。活性位点附近的酪氨酸链暗示了潜在的空穴转移途径,并证实了这种电子转移途径。ICVS数据揭示了在417和484 cm处的振动带,后者归因于一种激发态模式。ICVS模式的温度依赖性表明,在低温研究过程中需要考虑温度对蛋白质结构或构象异质性的影响。

相似文献

1
Ultrafast Charge-Transfer Dynamics in the Iron-Sulfur Complex of Rhodobacter capsulatus Ferredoxin VI.
J Phys Chem Lett. 2017 Sep 21;8(18):4498-4503. doi: 10.1021/acs.jpclett.7b02026. Epub 2017 Sep 7.
6
Cluster-Dependent Charge-Transfer Dynamics in Iron-Sulfur Proteins.
Biochemistry. 2018 Feb 13;57(6):978-990. doi: 10.1021/acs.biochem.7b01159. Epub 2018 Jan 24.

引用本文的文献

1
Understanding Short-Range Electron-Transfer Dynamics in Proteins.
J Phys Chem Lett. 2019 Feb 7;10(3):346-351. doi: 10.1021/acs.jpclett.8b03749. Epub 2019 Jan 10.
2
Cluster-Dependent Charge-Transfer Dynamics in Iron-Sulfur Proteins.
Biochemistry. 2018 Feb 13;57(6):978-990. doi: 10.1021/acs.biochem.7b01159. Epub 2018 Jan 24.

本文引用的文献

2
Sunlight-Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems.
ChemSusChem. 2017 Mar 9;10(5):894-902. doi: 10.1002/cssc.201601523. Epub 2017 Feb 9.
3
Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.
Science. 2016 Apr 22;352(6284):448-50. doi: 10.1126/science.aaf2091.
4
Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage?
Q Rev Biophys. 2015 Nov;48(4):411-20. doi: 10.1017/S0033583515000062.
6
Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10920-5. doi: 10.1073/pnas.1512704112. Epub 2015 Jul 20.
7
Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics.
Nat Chem. 2014 Oct;6(10):927-33. doi: 10.1038/nchem.2041. Epub 2014 Aug 31.
8
Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR.
Structure. 2014 Jun 10;22(6):899-910. doi: 10.1016/j.str.2014.04.016. Epub 2014 May 29.
9
Unsensitized photochemical hydrogen production catalyzed by diiron hydrides.
J Am Chem Soc. 2012 Mar 14;134(10):4525-8. doi: 10.1021/ja211778j. Epub 2012 Feb 27.
10
Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production.
J Am Chem Soc. 2010 Jul 21;132(28):9672-80. doi: 10.1021/ja101031r.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验