Chen Yanfei, Yue Tong, An Pei, Hong Hanyu, Liu Tao, Liu Yangkai, Zhou Yihui
Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430072, China.
Sensors (Basel). 2025 Jun 15;25(12):3750. doi: 10.3390/s25123750.
Single image dehazing is a fundamental task in computer vision, aiming to recover a clear scene from a hazy input image. To address the limitations of traditional dehazing algorithms-particularly in global feature association and local detail preservation-this study proposes a novel Transformer-based dehazing model enhanced by an interactive channel attention mechanism. The proposed architecture adopts a U-shaped encoder-decoder framework, incorporating key components such as a feature extraction module and a feature fusion module based on interactive attention. Specifically, the interactive channel attention mechanism facilitates cross-layer feature interaction, enabling the dynamic fusion of global contextual information and local texture details. The network architecture leverages a multi-scale feature pyramid to extract image information across different dimensions, while an improved cross-channel attention weighting mechanism enhances feature representation in regions with varying haze densities. Extensive experiments conducted on both synthetic and real-world datasets-including the RESIDE benchmark-demonstrate the superior performance of the proposed method. Quantitatively, it achieves PSNR gains of 0.53 dB for indoor scenes and 1.64 dB for outdoor scenes, alongside SSIM improvements of 1.4% and 1.7%, respectively, compared with the second-best performing method. Qualitative assessments further confirm that the proposed model excels in restoring fine structural details in dense haze regions while maintaining high color fidelity. These results validate the effectiveness of the proposed approach in enhancing both perceptual quality and quantitative accuracy in image dehazing tasks.
单图像去雾是计算机视觉中的一项基础任务,旨在从模糊的输入图像中恢复清晰的场景。为了解决传统去雾算法的局限性,特别是在全局特征关联和局部细节保留方面的局限性,本研究提出了一种基于Transformer的新型去雾模型,并通过交互式通道注意力机制进行了增强。所提出的架构采用了U形编码器-解码器框架,纳入了诸如基于交互式注意力的特征提取模块和特征融合模块等关键组件。具体而言,交互式通道注意力机制促进了跨层特征交互,实现了全局上下文信息和局部纹理细节的动态融合。该网络架构利用多尺度特征金字塔在不同维度上提取图像信息,同时改进的跨通道注意力加权机制增强了在不同雾度密度区域的特征表示。在包括RESIDE基准在内的合成数据集和真实世界数据集上进行的大量实验证明了所提方法的卓越性能。在定量方面,与性能第二好的方法相比,它在室内场景中实现了0.53 dB的峰值信噪比提升以及在室外场景中实现了1.64 dB的提升,同时结构相似性指数(SSIM)分别提高了1.4%和1.7%。定性评估进一步证实,所提出的模型在恢复浓雾区域的精细结构细节方面表现出色,同时保持了高色彩保真度。这些结果验证了所提方法在提高图像去雾任务中的感知质量和定量准确性方面的有效性。