Suppr超能文献

评估图像质量指标作为图像去雾的损失函数

Evaluating Image Quality Metrics as Loss Functions for Image Dehazing.

作者信息

Dobre-Baron Rareș, Savu-Jivanov Adrian, Ancuți Cosmin

机构信息

Faculty of Electronics, Telecommunications and Information Technologies, Polytechnic University Timisoara, 300006 Timisoara, Romania.

出版信息

Sensors (Basel). 2025 Aug 1;25(15):4755. doi: 10.3390/s25154755.

Abstract

The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Metric (SSIM). However, disparities between rankings given by these metrics and those given by human evaluators have encouraged the development of improved image quality assessment (IQA) metrics that are a better fit for this purpose. These methods have been previously used solely for quality assessments and not as objectives in the training of neural networks for high-level vision tasks, despite the potential improvements that may come about by directly optimizing for desired metrics. This paper examines the adequacy of ten recent IQA metrics, compared with standard loss functions, within two trained dehazing neural networks, with observed broad improvement in their performance.

摘要

为受各种类型退化影响的图像以及经开发算法清理后的图像的质量进行排名时,获取人类评估者既困难又需人工操作,这导致了诸如峰值信噪比(PSNR)和结构相似性指数度量(SSIM)等自动化度量的广泛采用。然而,这些度量给出的排名与人类评估者给出的排名之间存在差异,这促使人们开发更适合此目的的改进型图像质量评估(IQA)度量。尽管直接针对所需度量进行优化可能会带来潜在改进,但这些方法以前仅用于质量评估,而未作为高级视觉任务的神经网络训练中的目标。本文在两个经过训练的去雾神经网络中,将十种最新的IQA度量与标准损失函数进行比较,考察了它们的适用性,观察到其性能有广泛的提升。

相似文献

本文引用的文献

2
Vision Transformers for Single Image Dehazing.用于单图像去雾的视觉Transformer
IEEE Trans Image Process. 2023;32:1927-1941. doi: 10.1109/TIP.2023.3256763. Epub 2023 Mar 24.
5
Image Quality Assessment: Unifying Structure and Texture Similarity.图像质量评估:结构与纹理相似性的统一。
IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2567-2581. doi: 10.1109/TPAMI.2020.3045810. Epub 2022 Apr 1.
6
Day and Night-Time Dehazing by Local Airlight Estimation.基于局部大气光估计的昼夜去雾
IEEE Trans Image Process. 2020 Apr 23. doi: 10.1109/TIP.2020.2988203.
7
Perceptually optimized image rendering.感知优化图像渲染
J Opt Soc Am A Opt Image Sci Vis. 2017 Sep 1;34(9):1511-1525. doi: 10.1364/JOSAA.34.001511.
9
DehazeNet: An End-to-End System for Single Image Haze Removal.去雾网络:用于单幅图像去雾的端到端系统。
IEEE Trans Image Process. 2016 Nov;25(11):5187-5198. doi: 10.1109/TIP.2016.2598681.
10
Single image dehazing by multi-scale fusion.多尺度融合的单幅图像去雾。
IEEE Trans Image Process. 2013 Aug;22(8):3271-82. doi: 10.1109/TIP.2013.2262284.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验