Suppr超能文献

WO 和 W 的热原子层刻蚀采用“转化-氟化”和“氧化-转化-氟化”机制。

WO and W Thermal Atomic Layer Etching Using "Conversion-Fluorination" and "Oxidation-Conversion-Fluorination" Mechanisms.

机构信息

Department of Chemistry and Biochemistry, and ‡Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States.

出版信息

ACS Appl Mater Interfaces. 2017 Oct 4;9(39):34435-34447. doi: 10.1021/acsami.7b09161. Epub 2017 Sep 21.

Abstract

The thermal atomic layer etching (ALE) of WO and W was demonstrated with new "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl) and hydrogen fluoride (HF). BCl converts the WO surface to a BO layer while forming volatile WOCl products. Subsequently, HF spontaneously etches the BO layer producing volatile BF and HO products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl and HF reactions were self-limiting versus exposure. The WO ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop because BCl and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" mechanism. In this ABC exposure sequence, the W surface is first oxidized to a WO layer using O/O. Subsequently, the WO layer is etched with BCl and HF. SE could simultaneously monitor the W and WO thicknesses and conversion of W to WO. SE measurements showed that the W film thickness decreased linearly with number of ABC reaction cycles. W ALE was shown to be self-limiting with respect to each reaction in the ABC process. The etch rate for W ALE was ∼2.5 Å/cycle at 207 °C. An oxide thickness of ∼20 Å remained after W ALE, but could be removed by sequential BCl and HF exposures without affecting the W layer. These new etching mechanisms will enable the thermal ALE of a variety of additional metal materials including those that have volatile metal fluorides.

摘要

WO 和 W 的热原子层刻蚀 (ALE) 采用新的“转化-氟化”和“氧化-转化-氟化”刻蚀机制得到了证明。这两种机制都基于顺序、自限制反应。WO ALE 通过使用 AB 暴露序列(三氯化硼 (BCl) 和氢氟酸 (HF))的“转化-氟化”机制实现。BCl 将 WO 表面转化为 BO 层,同时形成挥发性 WOCl 产物。随后,HF 自发刻蚀 BO 层生成挥发性 BF 和 HO 产物。原位光谱椭圆光度法 (SE) 研究表明,BCl 和 HF 反应的暴露量是自限制的。WO ALE 刻蚀速率随温度升高而增加,从 128°C 时的 0.55 Å/循环增加到 207°C 时的 4.19 Å/循环。W 作为刻蚀停止层,因为 BCl 和 HF 无法刻蚀下面的 W 薄膜。W ALE 使用三步“氧化-转化-氟化”机制进行。在这种 ABC 暴露序列中,首先使用 O/O 将 W 表面氧化成 WO 层。随后,使用 BCl 和 HF 刻蚀 WO 层。SE 可以同时监测 W 和 WO 的厚度以及 W 向 WO 的转化。SE 测量表明,W 薄膜厚度随 ABC 反应循环次数的增加而线性减少。W ALE 在 ABC 过程中每个反应都是自限制的。W ALE 的刻蚀速率约为 2.5 Å/循环,在 207°C。W ALE 后留下约 20 Å 的氧化物厚度,但可以通过连续的 BCl 和 HF 暴露去除而不影响 W 层。这些新的刻蚀机制将使各种其他金属材料(包括具有挥发性金属氟化物的金属)的热 ALE 成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验