Suppr超能文献

在氯离子通道蛋白(CLC)质子/氯离子反向转运体中,两个氯离子和一个谷氨酸竞争一个螺旋笼。

Two Cl Ions and a Glu Compete for a Helix Cage in the CLC Proton/Cl Antiporter.

作者信息

Chenal Cat, Gunner M R

机构信息

Biochemistry Ph.D. Program, The Graduate Center of the City University of New York.

Biochemistry Ph.D. Program, The Graduate Center of the City University of New York; Physics Department, The City College of New York of the City University of New York, New York, New York.

出版信息

Biophys J. 2017 Sep 5;113(5):1025-1036. doi: 10.1016/j.bpj.2017.07.025.

Abstract

The ubiquitously expressed CLC chloride transporters are involved in a great variety of physiological functions. The CLC protein fold is shared by Cl channels and 2Cl:1H antiporters. The antiporters pump three charges per cycle across the membrane with two Cl ions moving in the opposite direction of one proton. Multiconformational continuum electrostatics was used to calculate the coupled thermodynamics of the protonation of the extracellular-facing gating Glu (E) and Cl binding to the external (S) and central (S) sites in CLC-ec1, the Escherichia coli exchanger. S, S, and E are buried within the protein where the intersection of two helix N-termini creates a region with a strong, localized positive potential for anion binding. Our chemical potential titrations describe the thermodynamic linkage for binding the Cl to each site and protons to E. We find that the 2Cl:1H binding stoichiometry is a result of Cl binding to S requiring H binding to E, whereas Cl binding to S does not lead to proton uptake. When S binds a Cl, the protonated E moves upward, out of the positive helix cage. The increasing E proton affinity on binding the first Cl reduces the cost of binding the second Cl at either S or S. Despite the repulsion among the anions, the lowest energy states have two anions bound in the helix cage. The state with no Cl is not favored electrostatically, but relies on E blocking S and on the central residues Y445 and S107 blocking S.

摘要

广泛表达的CLC氯离子转运体参与多种生理功能。Cl通道和2Cl:1H反向转运体具有相同的CLC蛋白结构。反向转运体每循环跨膜泵送三个电荷,两个Cl离子向与一个质子相反的方向移动。利用多构象连续静电学计算了面向细胞外的门控谷氨酸(E)质子化以及Cl与大肠杆菌交换体CLC-ec1中的外部(S)和中央(S)位点结合的耦合热力学。S、S和E埋藏在蛋白质内部,两个螺旋N端的交叉处形成一个具有强局部正电位的阴离子结合区域。我们的化学势滴定描述了Cl与每个位点结合以及质子与E结合的热力学联系。我们发现2Cl:1H的结合化学计量是Cl与S结合需要H与E结合的结果,而Cl与S结合不会导致质子摄取。当S结合一个Cl时,质子化的E向上移动,离开正螺旋笼。结合第一个Cl时E质子亲和力的增加降低了在S或S处结合第二个Cl的成本。尽管阴离子之间存在排斥作用,但最低能量状态是两个阴离子结合在螺旋笼中。没有Cl的状态在静电方面不受青睐,而是依赖于E阻断S以及中央残基Y445和S107阻断S。

相似文献

1
Two Cl Ions and a Glu Compete for a Helix Cage in the CLC Proton/Cl Antiporter.
Biophys J. 2017 Sep 5;113(5):1025-1036. doi: 10.1016/j.bpj.2017.07.025.
2
The coupled proton transport in the ClC-ec1 Cl(-)/H(+) antiporter.
Biophys J. 2011 Nov 16;101(10):L47-9. doi: 10.1016/j.bpj.2011.10.021. Epub 2011 Nov 15.
5
Intracellular proton-transfer mutants in a CLC Cl-/H+ exchanger.
J Gen Physiol. 2009 Feb;133(2):131-8. doi: 10.1085/jgp.200810112. Epub 2009 Jan 12.
6
Modulating the Chemical Transport Properties of a Transmembrane Antiporter via Alternative Anion Flux.
J Am Chem Soc. 2018 Dec 5;140(48):16535-16543. doi: 10.1021/jacs.8b07614. Epub 2018 Nov 27.
7
Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl/H antiporter.
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17345-17354. doi: 10.1073/pnas.1901822116. Epub 2019 Aug 13.
8
Uncoupling of a CLC Cl-/H+ exchange transporter by polyatomic anions.
J Mol Biol. 2006 Sep 29;362(4):682-90. doi: 10.1016/j.jmb.2006.07.006. Epub 2006 Aug 14.
9
Multiscale Simulations Reveal Key Aspects of the Proton Transport Mechanism in the ClC-ec1 Antiporter.
Biophys J. 2016 Mar 29;110(6):1334-45. doi: 10.1016/j.bpj.2016.02.014.
10
Proton pathways and H+/Cl- stoichiometry in bacterial chloride transporters.
Proteins. 2007 Jul 1;68(1):26-33. doi: 10.1002/prot.21441.

引用本文的文献

1
The role of conformational change and key glutamic acid residues in the ClC-ec1 antiporter.
Biophys J. 2023 Mar 21;122(6):1068-1085. doi: 10.1016/j.bpj.2023.01.025. Epub 2023 Jan 25.
2
Characterizing Protein Protonation Microstates Using Monte Carlo Sampling.
J Phys Chem B. 2022 Apr 7;126(13):2476-2485. doi: 10.1021/acs.jpcb.2c00139. Epub 2022 Mar 28.
4
Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl/H antiporter.
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17345-17354. doi: 10.1073/pnas.1901822116. Epub 2019 Aug 13.
5
Relative stability of the S isomers of the oxygen evolving complex of photosystem II.
Photosynth Res. 2019 Sep;141(3):331-341. doi: 10.1007/s11120-019-00637-6. Epub 2019 Apr 2.
7
Chloride Ion Transport by the CLC Cl/H Antiporter: A Combined Quantum-Mechanical and Molecular-Mechanical Study.
Front Chem. 2018 Mar 13;6:62. doi: 10.3389/fchem.2018.00062. eCollection 2018.
8
Multiscale Kinetic Modeling Reveals an Ensemble of Cl/H Exchange Pathways in ClC-ec1 Antiporter.
J Am Chem Soc. 2018 Feb 7;140(5):1793-1804. doi: 10.1021/jacs.7b11463. Epub 2018 Jan 30.

本文引用的文献

1
Probing the conformation of a conserved glutamic acid within the Cl pathway of a CLC H/Cl exchanger.
J Gen Physiol. 2017 Apr 3;149(4):523-529. doi: 10.1085/jgp.201611682. Epub 2017 Feb 28.
3
The Origin of Coupled Chloride and Proton Transport in a Cl/H Antiporter.
J Am Chem Soc. 2016 Nov 16;138(45):14923-14930. doi: 10.1021/jacs.6b06683. Epub 2016 Nov 8.
4
Shared Molecular Mechanisms of Membrane Transporters.
Annu Rev Biochem. 2016 Jun 2;85:543-72. doi: 10.1146/annurev-biochem-060815-014520. Epub 2016 Mar 21.
5
Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl(-)/H(+) Exchanger ClC-ec1.
J Am Chem Soc. 2016 Mar 9;138(9):3066-75. doi: 10.1021/jacs.5b12062. Epub 2016 Feb 26.
7
Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions.
J Chem Theory Comput. 2006 Nov;2(6):1499-509. doi: 10.1021/ct600252r.
8
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
9
13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1.
J Biomol NMR. 2015 Apr;61(3-4):209-26. doi: 10.1007/s10858-015-9898-7. Epub 2015 Jan 29.
10
Halorhodopsin pumps Cl- and bacteriorhodopsin pumps protons by a common mechanism that uses conserved electrostatic interactions.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16377-82. doi: 10.1073/pnas.1411119111. Epub 2014 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验