Chenal Cat, Gunner M R
Biochemistry Ph.D. Program, The Graduate Center of the City University of New York.
Biochemistry Ph.D. Program, The Graduate Center of the City University of New York; Physics Department, The City College of New York of the City University of New York, New York, New York.
Biophys J. 2017 Sep 5;113(5):1025-1036. doi: 10.1016/j.bpj.2017.07.025.
The ubiquitously expressed CLC chloride transporters are involved in a great variety of physiological functions. The CLC protein fold is shared by Cl channels and 2Cl:1H antiporters. The antiporters pump three charges per cycle across the membrane with two Cl ions moving in the opposite direction of one proton. Multiconformational continuum electrostatics was used to calculate the coupled thermodynamics of the protonation of the extracellular-facing gating Glu (E) and Cl binding to the external (S) and central (S) sites in CLC-ec1, the Escherichia coli exchanger. S, S, and E are buried within the protein where the intersection of two helix N-termini creates a region with a strong, localized positive potential for anion binding. Our chemical potential titrations describe the thermodynamic linkage for binding the Cl to each site and protons to E. We find that the 2Cl:1H binding stoichiometry is a result of Cl binding to S requiring H binding to E, whereas Cl binding to S does not lead to proton uptake. When S binds a Cl, the protonated E moves upward, out of the positive helix cage. The increasing E proton affinity on binding the first Cl reduces the cost of binding the second Cl at either S or S. Despite the repulsion among the anions, the lowest energy states have two anions bound in the helix cage. The state with no Cl is not favored electrostatically, but relies on E blocking S and on the central residues Y445 and S107 blocking S.
广泛表达的CLC氯离子转运体参与多种生理功能。Cl通道和2Cl:1H反向转运体具有相同的CLC蛋白结构。反向转运体每循环跨膜泵送三个电荷,两个Cl离子向与一个质子相反的方向移动。利用多构象连续静电学计算了面向细胞外的门控谷氨酸(E)质子化以及Cl与大肠杆菌交换体CLC-ec1中的外部(S)和中央(S)位点结合的耦合热力学。S、S和E埋藏在蛋白质内部,两个螺旋N端的交叉处形成一个具有强局部正电位的阴离子结合区域。我们的化学势滴定描述了Cl与每个位点结合以及质子与E结合的热力学联系。我们发现2Cl:1H的结合化学计量是Cl与S结合需要H与E结合的结果,而Cl与S结合不会导致质子摄取。当S结合一个Cl时,质子化的E向上移动,离开正螺旋笼。结合第一个Cl时E质子亲和力的增加降低了在S或S处结合第二个Cl的成本。尽管阴离子之间存在排斥作用,但最低能量状态是两个阴离子结合在螺旋笼中。没有Cl的状态在静电方面不受青睐,而是依赖于E阻断S以及中央残基Y445和S107阻断S。