Suppr超能文献

在二项迫选辨别任务中考虑知觉学习的依赖试验的心理测量函数。

Trial-dependent psychometric functions accounting for perceptual learning in 2-AFC discrimination tasks.

作者信息

Kattner Florian, Cochrane Aaron, Green C Shawn

机构信息

Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.

Institute of Psychology, Technische Universität Darmstadt, Darmstadt, Germany.

出版信息

J Vis. 2017 Sep 1;17(11):3. doi: 10.1167/17.11.3.

Abstract

The majority of theoretical models of learning consider learning to be a continuous function of experience. However, most perceptual learning studies use thresholds estimated by fitting psychometric functions to independent blocks, sometimes then fitting a parametric function to these block-wise estimated thresholds. Critically, such approaches tend to violate the basic principle that learning is continuous through time (e.g., by aggregating trials into large "blocks" for analysis that each assume stationarity, then fitting learning functions to these aggregated blocks). To address this discrepancy between base theory and analysis practice, here we instead propose fitting a parametric function to thresholds from each individual trial. In particular, we implemented a dynamic psychometric function whose parameters were allowed to change continuously with each trial, thus parameterizing nonstationarity. We fit the resulting continuous time parametric model to data from two different perceptual learning tasks. In nearly every case, the quality of the fits derived from the continuous time parametric model outperformed the fits derived from a nonparametric approach wherein separate psychometric functions were fit to blocks of trials. Because such a continuous trial-dependent model of perceptual learning also offers a number of additional advantages (e.g., the ability to extrapolate beyond the observed data; the ability to estimate performance on individual critical trials), we suggest that this technique would be a useful addition to each psychophysicist's analysis toolkit.

摘要

大多数学习理论模型认为学习是经验的连续函数。然而,大多数知觉学习研究使用通过将心理测量函数拟合到独立组块来估计的阈值,有时还会将参数函数拟合到这些按组块估计的阈值。至关重要的是,这些方法往往违反了学习在时间上是连续的这一基本原则(例如,通过将试验聚合为大的“组块”进行分析,每个组块都假设平稳性,然后将学习函数拟合到这些聚合的组块)。为了解决基础理论与分析实践之间的这种差异,在此我们提出改为将参数函数拟合到每个单独试验的阈值。具体而言,我们实现了一个动态心理测量函数,其参数允许随着每次试验连续变化,从而对非平稳性进行参数化。我们将所得的连续时间参数模型拟合到来自两个不同知觉学习任务的数据。几乎在每种情况下,从连续时间参数模型得出的拟合质量都优于从非参数方法得出的拟合质量,在非参数方法中,分别将心理测量函数拟合到试验组块。由于这种依赖于试验的连续知觉学习模型还具有许多其他优点(例如,能够外推到观测数据之外;能够估计单个关键试验的表现),我们建议这种技术将成为每个心理物理学家分析工具包中的一项有用补充。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验